954 resultados para Maxwells Equations
Resumo:
Les besoins toujours croissants en terme de transfert de données numériques poussent au développement de nouvelles technologies pour accroître la capacité des réseaux, notamment en ce qui concerne les réseaux de fibre optique. Parmi ces nouvelles technologies, le multiplexage spatial permet de multiplier la capacité des liens optiques actuels. Nous nous intéressons particulièrement à une forme de multiplexage spatial utilisant le moment cinétique orbital de la lumière comme base orthogonale pour séparer un certain nombre de canaux. Nous présentons d’abord les notions d’électromagnétisme et de physique nécessaires à la compréhension des développements ultérieurs. Les équations de Maxwell sont dérivées afin d’expliquer les modes scalaires et vectoriels de la fibre optique. Nous présentons également d’autres propriétés modales, soit la coupure des modes, et les indices de groupe et de dispersion. La notion de moment cinétique orbital est ensuite introduite, avec plus particulièrement ses applications dans le domaine des télécommunications. Dans une seconde partie, nous proposons la carte modale comme un outil pour aider au design des fibres optiques à quelques modes. Nous développons la solution vectorielle des équations de coupure des modes pour les fibres en anneau, puis nous généralisons ces équations pour tous les profils de fibres à trois couches. Enfin, nous donnons quelques exemples d’application de la carte modale. Dans la troisième partie, nous présentons des designs de fibres pour la transmission des modes avec un moment cinétique orbital. Les outils développés dans la seconde partie sont utilisés pour effectuer ces designs. Un premier design de fibre, caractérisé par un centre creux, est étudié et démontré. Puis un second design, une famille de fibres avec un profil en anneau, est étudié. Des mesures d’indice effectif et d’indice de groupe sont effectuées sur ces fibres. Les outils et les fibres développés auront permis une meilleure compréhension de la transmission dans la fibre optique des modes ayant un moment cinétique orbital. Nous espérons que ces avancements aideront à développer prochainement des systèmes de communications performants utilisant le multiplexage spatial.
Resumo:
This research work analyses techniques for implementing a cell-centred finite-volume time-domain (ccFV-TD) computational methodology for the purpose of studying microwave heating. Various state-of-the-art spatial and temporal discretisation methods employed to solve Maxwell's equations on multidimensional structured grid networks are investigated, and the dispersive and dissipative errors inherent in those techniques examined. Both staggered and unstaggered grid approaches are considered. Upwind schemes using a Riemann solver and intensity vector splitting are studied and evaluated. Staggered and unstaggered Leapfrog and Runge-Kutta time integration methods are analysed in terms of phase and amplitude error to identify which method is the most accurate and efficient for simulating microwave heating processes. The implementation and migration of typical electromagnetic boundary conditions. from staggered in space to cell-centred approaches also is deliberated. In particular, an existing perfectly matched layer absorbing boundary methodology is adapted to formulate a new cell-centred boundary implementation for the ccFV-TD solvers. Finally for microwave heating purposes, a comparison of analytical and numerical results for standard case studies in rectangular waveguides allows the accuracy of the developed methods to be assessed.
Resumo:
Aijt-Sahalia (2002) introduced a method to estimate transitional probability densities of di®usion processes by means of Hermite expansions with coe±cients determined by means of Taylor series. This note describes a numerical procedure to ¯nd these coe±cients based on the calculation of moments. One advantage of this procedure is that it can be used e®ectively when the mathematical operations required to ¯nd closed-form expressions for these coe±cients are otherwise infeasible.
Resumo:
The solution of linear ordinary differential equations (ODEs) is commonly taught in first year undergraduate mathematics classrooms, but the understanding of the concept of a solution is not always grasped by students until much later. Recognising what it is to be a solution of a linear ODE and how to postulate such solutions, without resorting to tables of solutions, is an important skill for students to carry with them to advanced studies in mathematics. In this study we describe a teaching and learning strategy that replaces the traditional algorithmic, transmission presentation style for solving ODEs with a constructive, discovery based approach where students employ their existing skills as a framework for constructing the solutions of first and second order linear ODEs. We elaborate on how the strategy was implemented and discuss the resulting impact on a first year undergraduate class. Finally we propose further improvements to the strategy as well as suggesting other topics which could be taught in a similar manner.
Resumo:
In this paper, we consider the numerical solution of a fractional partial differential equation with Riesz space fractional derivatives (FPDE-RSFD) on a finite domain. Two types of FPDE-RSFD are considered: the Riesz fractional diffusion equation (RFDE) and the Riesz fractional advection–dispersion equation (RFADE). The RFDE is obtained from the standard diffusion equation by replacing the second-order space derivative with the Riesz fractional derivative of order αset membership, variant(1,2]. The RFADE is obtained from the standard advection–dispersion equation by replacing the first-order and second-order space derivatives with the Riesz fractional derivatives of order βset membership, variant(0,1) and of order αset membership, variant(1,2], respectively. Firstly, analytic solutions of both the RFDE and RFADE are derived. Secondly, three numerical methods are provided to deal with the Riesz space fractional derivatives, namely, the L1/L2-approximation method, the standard/shifted Grünwald method, and the matrix transform method (MTM). Thirdly, the RFDE and RFADE are transformed into a system of ordinary differential equations, which is then solved by the method of lines. Finally, numerical results are given, which demonstrate the effectiveness and convergence of the three numerical methods.
Resumo:
Small element spacing in compact arrays results in strong mutual coupling between the array elements. A decoupling network consisting of reactive cross-coupling elements can alleviate problems associated with the coupling. Closed-form design equations for the decoupling networks of symmetrical arrays with two or three elements are presented.