941 resultados para Matrix-metalloproteinase-9
Resumo:
Matrix metalloproteinase (MMP)-9 is produced by the central nervous system and inflammatory cells in a variety of inflammatory conditions in both animals and humans. MMP-9 promotes inflammation, breakdown of the blood-brain barrier, and vasculitis. Because vasculitis is seen frequently in patients with coccidioidal meningitis (CM), this study evaluated the presence of MMP-9 within the cerebrospinal fluid (CSF) of rabbits infected intracisternally with Coccidioides immitis arthroconidia. Infected rabbits demonstrated systemic and neurological sequelae to infection, including CSF pleocytosis. Levels of MMP-9 within CSF were assayed by use of zymography and compared with MMP-2 levels, which served as an internal control. Elevated levels of MMP-9 were detectable by day 3, continued to increase through day 10, and declined by day 15 after infection. MMP-9 may contribute to inflammation and vasculitis in this animal model. Future work can focus on evaluation of MMP inhibitors, to gain a better perspective of the role of this MMP in CM.
Resumo:
OBJECTIVES To examine whether circulating levels of matrix metalloproteinase 9 (MMP-9) were associated with ultrasound-assessed intima-media thickness (IMT) and echolucent plaques in the carotid and femoral arteries. To examine preanalytical sources of variability in MMP-9 concentrations related to sampling procedures. SUBJECTS AND DESIGN Plasma and serum MMP-9 levels were compared with ultrasound assessed measures of femoral and carotid atherosclerosis, in a cross-sectional study of 61-year-old men (n = 473). Preanalytical sources of variability in MMP-9 levels were examined in 10 healthy subjects. Main outcome measures were circulating levels of MMP-9 in serum and plasma, IMT of the carotid and femoral arteries, and plaque status based on size and echolucency. SETTING Research unit at university hospital. RESULTS Plasma concentrations of total and active MMP-9 were associated with femoral artery IMT independently of traditional cardiovascular risk factors, and were higher in subjects with moderate to large femoral plaques. Plasma MMP-9 concentration was higher in men with echolucent femoral plaques (P = 0.006) compared with subjects without femoral plaques. No similar associations were found for carotid plaques. MMP-9 concentrations were higher in serum than in plasma, and higher when sampling was performed with Vacutainer than with syringe. MMP-9 levels in serum were more strongly associated with peripheral neutrophil count compared with MMP-9 levels in plasma. CONCLUSIONS Plasma MMP-9 levels were associated with atherosclerosis in the femoral artery, and total MMP-9 concentration was higher in men with echolucent femoral plaques. The choice of sample material and sampling method affect the measurements of circulating MMP-9 levels.
Resumo:
Matrix metalloproteinase-9 (MMP-9) plays an important role in tumor invasion and angiogenesis. Secretion of MMP-9 has been reported in various cancer types including lung cancer, brain cancer, colon cancer, and breast cancer. Heregulin is a growth factor that regulates growth and differentiation of normal breast cells as well as mammary tumor cells. To study the role of heregulin in breast cancer metastasis, we tested whether heregulin may regulate MMP-9 secretion. By screening a panel of breast cancer cell line for their ability to respond to heregulin and produce MMP-9, we have found that MMP-9 secretion can be induced by heregulin-β1 in two breast cancer cell lines, SKBr3 and MCF-7. In both cell lines, increase of MMP-9 activity as shown by zymography was accompanied by increased protein level as well as mRNA level of MMP-9. Using a reporter luciferase assay, we have identified that proximal −670bp promoter of MMP-9 had similar activity to a 2.2kb MMP-9 promoter in response to heregulin stimulation. Heregulin treatment of SKBr3 and MCF-7 activated multiple signaling pathways inside cells. These include the Erk pathway, the p38 kinase pathway, PKC pathway, and PI-3K pathway. To examine which pathways are involved in MMP-9 activation by heregulin, we have used a panel of chemical inhibitors to specifically inhibit each one of these pathways. Ro-31-8220 (PKC inhibitor) and SB203580 (p38 kinase inhibitor) completely blocked heregulin activation of MMP-9. On the other hand, PD098059 (MEK-1 inhibitor) partially blocked MMP-9 activation, whereas PI-3K inhibitor, wortmannin, had no effect. Therefore, at least three signaling pathways are involved in activation of MMP-9 by heregulin. Since MMP-9 is tightly associated with metastatic potential, our study also suggests that heregulin may enhance breast tumor metastasis through induction of MMP-9 expression. ^
Resumo:
A human fibroblast cDNA expression library was screened for cDNA clones giving rise to flat colonies when transfected into v-Ki-ras-transformed NIH 3T3 cells. One such gene, RECK, encodes a membrane-anchored glycoprotein of about 110 kDa with multiple epidermal growth factor-like repeats and serine-protease inhibitor-like domains. While RECK mRNA is expressed in various human tissues and untransformed cells, it is undetectable in tumor-derived cell lines and oncogenically transformed cells. Restored expression of RECK in malignant cells resulted in suppression of invasive activity with concomitant decrease in the secretion of matrix metalloproteinase-9 (MMP-9), a key enzyme involved in tumor invasion and metastasis. Moreover, purified RECK protein was found to bind to, and inhibit the proteolytic activity of, MMP-9. Thus, RECK may link oncogenic signals to tumor invasion and metastasis.
Resumo:
The type IV collagenases/gelatinases matrix metalloproteinase-2 (MMP-2) and MMP-9 play a variety of important roles in both physiological and pathological processes and are regulated by various growth factors, including transforming growth factor-β1 (TGF-β1), in several cell types. Previous studies have suggested that cellular control of one or both collagenases can occur through direct transcriptional mechanisms and/or after secretion through proenzyme processing and interactions with metalloproteinase inhibitors. Using human prostate cancer cell lines, we have found that TGF-β1 induces the MMP-9 proenzyme; however, this induction does not result from direct effects on gene transcription but, instead, through a protein synthesis–requiring process leading to increased MMP-9 mRNA stability. In addition, we have examined levels of TGF-β1 regulation of MMP-2 in one prostate cancer cell line and found that TGF-β1 induces higher secreted levels of this collagenase through increased stability of the secreted 72-kDa proenzyme. These results identify two novel nontranscriptional pathways for the cellular regulation of MMP-9 and MMP-2 collagenase gene expression and activities.
Resumo:
OBJECTIVE: The aim of this study was to compare the immunohistochemical expression of nuclear factor κB (NF-κB), matrix metalloproteinase 9 (MMP-9), and CD105 in odontogenic keratocysts (OKCs), dentigerous cysts (DCs), and radicular cysts (RCs). STUDY DESIGN: Twenty cases of OKCs, 20 DCs, and 20 RCs were analyzed. A labeling index (LI), which expresses the percentage of NF-κB-stained nuclei, was calculated for the analysis of NF-κB expression. Expression of MMP-9 in the epithelium and in the capsule of each lesion was scored as 0 (<10% stained cells), 1 (10%-50% stained cells), or 2 (>50% stained cells). In addition, MMP-9 immunostaining was analyzed in endothelial cells of vessels with a conspicuous lumen. The angiogenic index was determined based on the number of anti-CD105 antibody-stained microvessels. RESULTS: In the epithelial component, the NF-κB LI was higher in OKCs than in DCs and RCs (P < .001). Analysis of MMP-9 expression in the epithelial component showed a predominance of score 2 in OKCs (90%), DCs (70%), and RCs (65%; P = .159). Evaluation of the NF-κB LI according to the expression of MMP-9 in the epithelial lining revealed no significant difference between lesions (P = .282). In the fibrous capsule, the highest percentage of MMP-9-stained cells (score 2) was observed in OKCs (P = .100). Analysis of the expression of MMP-9 in the vessels of odontogenic cysts showed a predominance of score 2 in OKCs (80%) and RCs (50%) and of score 1 in DCs (75%; P = .002). Mean microvessel count was high in RCs (16.9), followed by DCs (12.1) and OKCs (10.0; P = .163). No significant difference in microvessel count according to the expression of MMP-9 was observed between groups (P = .689). CONCLUSIONS: The results suggest that the more aggressive biologic behavior of OKCs is related to the higher expression of MMP-9 and NF-κB in those lesions. The differences in the biologic behavior of the lesions studied do not seem to be associated with the angiogenic index.
Resumo:
Colorectal cancer (CRC) is the third most common cancer in the UK with 41,000 new cases diagnosed in 2011. Despite undergoing potentially curative resection, a significant amount of patients develop recurrence. Biomarkers that aid prognostication or identify patients who are suitable for adjuvant treatments are needed. The TNM staging system does a reasonably good job at offering prognostic information to the treating clinician, but it could be better and identifying methods of improving its accuracy are needed. Tumour progression is based on a complex relationship between tumour behaviour and the hosts’ inflammatory responses. Sustained tumour cell proliferation, evading growth suppressors, resisting apoptosis, replicative immortality, sustained angiogenesis, invasion & metastasis, avoiding immune destruction, deregulated cellular energetics, tumour promoting inflammation and genomic instability & mutation have been identified as hallmarks. These hallmarks are malignant behaviors are what makes the cell cancerous and the more extreme the behaviour the more aggressive the cancer the more likely the risk of a poor outcome. There are two primary genomic instability pathways: Microsatellite Instability (MSI) and Chromosomal Instability (CI) also referred to as Microsatellite Stability (MSS). Tumours arising by these pathways have a predilection for specific anatomical, histological and molecular biological features. It is possible that aberrant molecular expression of genes/proteins that promote malignant behaviors may also act as prognostic and predictive biomarkers, which may offer superior prognostic information to classical prognostic features. Cancer related inflammation has been described as a 7th hallmark of cancer. Despite the systemic inflammatory response (SIR) being associated with more aggressive malignant disease, infiltration by immune cells, particularly CD8+ lymphocytes, at the advancing edge of the tumour have been associated with improved outcome and tumour MSI. It remains unknown if the SIR is associated with tumour MSI and this requires further study. The mechanisms by which colorectal cancer cells locally invade through the bowel remain uncertain, but connective tissue degradation by matrix metalloproteinases (MMPs) such as MMP-9 have been implicated. MMP-9 has been found in the cancer cells, stromal cells and patient circulation. Although tumoural MMP-9 has been associated with poor survival, reports are conflicting and contain relatively small sample sizes. Furthermore, the influence of high serum MMP-9 on survival remains unknown. Src family kinases (SFKs) have been implicated in many adverse cancer cell behaviors. SFKs comprise 9 family members BLK, C-SRC, FGR, FYN, HCK, LCK, LYN, YES, YRK. C-SRC has been the most investigated of all SFKs, but the role of other SFKs in cellular behaviors and their prognostic value remains largely unknown. The development of Src inhibitors, such as Dasatinib, has identified SFKs as a potential therapeutic target for patients at higher risk of poor survival. Unfortunately, clinical trials so far have not been promising but this may reflect inadequate patient selection and SFKs may act as useful prognostic and predictive biomarkers. In chapter 3, the association between cancer related inflammation, tumour MSI, clinicopathological factors and survival was tested in two independent cohorts. A training cohort consisting of n=182 patients and a validation cohort of n=677 patients. MSI tumours were associated with a raised CRP (p=0.003). Hypoalbuminaemia was independently associated with poor overall survival in TNM stage II cancer (HR 3.04 (95% CI 1.44 – 6.43);p=0.004), poor recurrence free survival in TNM stage III cancer (HR 1.86 (95% 1.03 – 3.36);p=0.040) and poor overall survival in CI colorectal cancer (HR 1.49 (95% CI 1.06 – 2.10);p=0.022). Interestingly, MSI tumours were associated with poor overall survival in TNM stage III cancer (HR 2.20 (95% CI 1.10 – 4.37);p=0.025). In chapter 4, the role of MMP-9 in colorectal cancer progression and survival was examined. MMP-9 in the tissue was assessed using IHC and serum expression quantified using ELISA. Serum MMP-9 was associated with cancer cell expression (Spearman’s Correlation Coefficient (SCC) 0.393, p<0.001)) and stromal expression (SCC 0.319, p=0.002). Serum MMP-9 was associated with poor recurrence-free (HR 3.37 (95% CI 1.20 – 9.48);p=0.021) and overall survival (HR 3.16 (95% CI 1.22 – 8.15);p=0.018), but tumour MMP-9 was not survival or MSI status. In chapter 5, the role of SFK expression and activation in colorectal cancer progression and survival was studied. On PCR analysis, although LYN, C-SRC and YES were the most highly expressed, FGR and HCK had higher expression profiles as tumours progressed. Using IHC, raised cytoplasmic FAK (tyr 861) was independently associated with poor recurrence free survival in all cancers (HR 1.48 (95% CI 1.02 – 2.16);p=0.040) and CI cancers (HR 1.50 (95% CI 1.02 – 2.21);p=0.040). However, raised cytoplasmic HCK (HR 2.04 (95% CI 1.11 – 3.76);p=0.022) was independently associated with poor recurrence-free survival in TNM stage II cancers. T84 and HT29 cell lines were used to examine the cellular effects of Dasatinib. Cell viability was assessed using WST-1 assay and apoptosis assessed using an ELISA cell death detection assay. Dasatinib increased T84 tumour cell apoptosis in a dose dependent manner and resulted in reduced expression of nuclear (p=0.008) and cytoplasmic (p=0.016) FAK (tyr 861) expression and increased nuclear FGR expression (p=0.004). The results of this thesis confirm that colorectal cancer is a complex disease that represents several subtypes of cancer based on molecular biological behaviors. This thesis concentrated on features of the disease related to inflammation in terms of genetic and molecular characterisation. MSI cancers are closely associated with systemic inflammation but despite this observation, they retain their relatively improved survival. MMP-9 is a feature of tissue remodeling during inflammation and is also associated with degradation of connective tissue, advanced T-stage and poor outcome when measured in the serum. The lack of stromal quantification due to TMA use rather than full sections makes the value of tumoural MMP-9 immunoreactivity in the prognostication and its association with MSI unknown and requires further study. Finally, SFK activation was also associated with SIR, however, only cytoplasmic HCK was independently associated with poor survival in patients with TNM stage II disease, the group of patients where identifying a novel biomarker is most needed. There is still some way to go before these biomarkers are translated into clinical practice and future work needs to focus on obtaining a reliable and robust scientific technique with validation in an adequately powered independent cohort.
Resumo:
Background: Altered levels of matrix metalloproteinases (MMPs) and their inhibitors, the tissue inhibitors of metalloproteinases (TIMPs), are involved in cardiovascular alterations associated with end stage kidney disease (ESKD). Genetic polymorphisms in MMP-9 gene affect MMP-9 levels. We examined how MMP-9 polymorphisms and haplotypes affect the changes in plasma MMP-9 and TIMP-1 levels found in patients with ESKD undergoing hemodialysis. Methods: We studied 94 ESKD patients undergoing hemodialysis for at least 3 months. MMP-9 and TIMP-1 were measured by ELISA in plasma from blood samples collected before and after a session of hemodialysis. Genotypes for three MMP-9 polymorphisms (C-1562T, rs3918242; -90 (CA)(14-24), rs2234681; and Q279R, rs17576) were determined by Taqman (R) Allele Discrimination Assay and real-time polymerase chain reaction. Haplotype frequencies were determined with the software program PHASE 2.1. Results: Hemodialysis increased MMP-9 and TIMP-1 levels (P<0.05). Genotypes had no effects on baseline MMP-9 and TIMP-1 levels (P>0.05). Hemodialysis increased MMP-9 and TIMP-1 levels in subjects with the CC (but not CT or TT) genotype for the C-1562T polymorphism (P<0.05), and increased MMP-9 levels in subjects with the QQ (but not QR or RR) genotype for the Q279R polymorphism (P<0.05), whereas the CA(n)(14-24) polymorphism had no major effects. While MMP-9 haplotypes had no effects on baseline MMP-9 levels (P>0.05), hemodialysis increased MMP-9 levels and MMP-9/TIMP-1 ratios in subjects carrying the CLQ haplotype (P = 0.0012 and P = 0.0045, respectively). Conclusion: ESKD patients with the QQ genotype for the Q279R polymorphism or with the CLQ haplotype are exposed to more severe increases in MMP-9 levels after hemodialysis. Such patients may benefit from the use of MMP inhibitors. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Deficient formation of endogenous nitric oxide (NO) contributes to cardiovascular diseases, and this may be associated with increased circulating levels of matrix metalloproteinase-9 (MMP-9), as previously shown in white subjects. Because interethnic differences exist with respect to risk factors, prevalence, and severity of cardiovascular diseases, we designed this study to examine whether the circulating levels of nitrites (a marker of endogenous NO formation) are associated with the plasma levels of MMP-9 and MMP-2 in healthy black subjects. We studied 198 healthy subjects self-reported as blacks not taking any medications. Venous blood samples were collected and plasma and whole blood nitrite levels were measured using an ozone-based chemiluminescence assay. Plasma MMP-2 and MMP-9 levels were determined by gelatin zymography. We found a positive correlation between plasma MMP-9 and MMP-2 levels (P < 0.0001, rs = 0.556). Interestingly, we found a negative relationship between the plasma MMP-9 levels and the plasma or whole blood nitrites levels (P = 0.04, rs = -0.149; and P < 0.0001, rs = -0.349, respectively). In parallel, we found similar negative relationships between plasma MMP-2 levels and plasma or whole blood nitrites levels (P = 0.02, rs = -0.172; and P < 0.0001, rs = -0.454, respectively). This is the first study to show that endogenous nitric oxide formation correlates negatively with the circulating levels of both MMP-2 and MMP-9 in black subjects. Our findings suggest a mechanistic link between deficient NO formation and increased MMPs levels, which may promote cardiovascular diseases.
Resumo:
Ischaemic injury impairs the integrity of the blood-brain barrier (BBB). In this study, we investigated the molecular causes of this defect with regard to the putative correlations among NAD(P)H oxidase, plasminogen-plasmin system components, and matrix metalloproteinases. Hence, the activities of NAD(P)H oxidase, matrix metalloproteinase-2, urokinase-type plasminogen activator (uPA), and tissue-type plasminogen activator (tPA), and superoxide anion levels, were assessed in human brain microvascular endothelial cells (HBMECs) exposed to oxygen-glucose deprivation (OGD) alone or OGD followed by reperfusion (OGD + R). The integrity of an in vitro model of BBB comprising HBMECs and astrocytes was studied by measuring transendothelial electrical resistance and the paracellular flux of albumin. OGD with or without reperfusion (OGD ± R) radically perturbed barrier function while concurrently enhancing uPA, tPA and NAD(P)H oxidase activities and superoxide anion release in HBMECs. Pharmacological inactivation of NAD(P)H oxidase attenuated OGD ± R-mediated BBB damage through modulation of matrix metalloproteinase-2 and tPA, but not uPA activity. Overactivation of NAD(P)H oxidase in HBMECs via cDNA electroporation of its p22-phox subunit confirmed the involvement of tPA in oxidase-mediated BBB disruption. Interestingly, blockade of uPA or uPA receptor preserved normal BBB function by neutralizing both NAD(P)H oxidase and matrix metalloproteinase-2 activities. Hence, selective targeting of uPA after ischaemic strokes may protect cerebral barrier integrity and function by concomitantly attenuating basement membrane degradation and oxidative stress.
Resumo:
Imbalanced matrix metalloproteinase (MMP) expression, including MMP-2, has been demonstrated in pre-eclampsia. However, little is known about the effect of polymorphisms in MMP-2 gene on hypertensive disorders of pregnancy. We examined whether two functional MMP-2 polymorphisms (g.-1306C>T and g.-735C>T) are associated with pre-eclampsia and/or gestational hypertension and whether these polymorphisms affect therapeutic responses in women with these conditions. We studied 216 healthy pregnant women (HP), 185 patients with gestational hypertension (GH) and 216 patients with pre-eclampsia (PE). They were stratified as responsive or non-responsive to antihypertensive therapy according to clinical and laboratorial parameters of therapeutic responsiveness. Genomic DNA was extracted from whole blood and genotypes for g-1306C>T and g.-735C>T polymorphisms were determined by real-time PCR using Taqman allele discrimination assays. Haplotype frequencies were inferred using the PHASE 2.1 program. The distributions of MMP-2 genotypes and haplotypes were similar in HP, GH and PE patients (p > 0.05). In addition, we found no significant differences in MMP-2 genotype or haplotype frequencies when GH or PE patients were classified as responsive or non-responsive to antihypertensive therapy (p > 0.05). Our results suggest that MMP-2 polymorphisms do not affect the susceptibility to hypertensive disorders of pregnancy. In parallel, MMP-2 polymorphisms apparently do not affect the responsiveness to antihypertensive therapy of women with these hypertensive disorders of pregnancy.
Resumo:
Biochemical markers of cardiovascular disease, including matrix metalloproteinases (MMPs), are altered in women with polycystic ovary syndrome (PCOS), with many of these alterations thought to be due to excess androgen concentrations. Despite oral contraceptives (OCs) being the first-line pharmacological treatment in women with PCOS and the importance of MMPs in many physiological conditions and pathological states, including cardiovascular diseases, no study has yet evaluated whether OCs alter plasma concentrations of MMPs. We therefore assessed whether treatment with an OC containing the anti-androgenic progestogen alters MMP profiles in women with PCOS. We analysed 20 women with PCOS who wanted hormonal contraception (OC-PCOS group), 20 ovulatory women who required hormonal contraception (OC-control group) and 20 ovulatory women who wanted non-hormonal contraception (non-OC-control group). OC consisted of cyclic use of 2 mg chlormadinone acetate/30 mu g ethinylestradiol for 6 months. Plasma concentrations of MMP-2, MMP-9, TIMP-1 and TIMP-2 were measured by gelatin zymography or enzyme-linked immunoassays. OC treatment for 6 months significantly reduced plasma MMP-2 concentrations in the OC-control and OC-PCOS groups and TIMP-2 and TIMP-1 concentrations levels in the OC-control group (all p < 0.05), but had no effects on MMP-9 concentrations or on MMP-2/TIMP-2 and MMP-9/TIMP-1 ratios in any group (all p > 0.05). These findings indicated that long-term treatment with an OC containing chlormadinone acetate plus ethinylestradiol reduced plasma MMP-2 concentrations in both healthy and PCOS women. As the latter have imbalances in circulating matrix MMPs, treatment of these women with an OC may be beneficial.
Resumo:
Increased reactive oxygen species (ROS) promote matrix metalloproteinase (MMP) activities and may underlie cardiomyocyte injury and the degradation of cardiac troponin I (cTI) during acute pulmonary thromboembolism (APT). We examined whether pretreatment or therapy with tempol (a ROS scavenger) prevents MMP activation and cardiomyocyte injury of APT. Anesthetized sheep received tempol infusion (1.0 mg kg(-1) min(-1), i.v.) or saline starting 30 min before or 30 min after APT (autologous blood clots). Control animals received saline. Hemodynamic measurements were performed. MMPs were studied in the right ventricle (RV) by gelatin zymography, fluorimetric activity assay, and in situ zymography. The ROS levels were determined in the RV and cTI were measured in serum samples. APT increased the pulmonary arterial pressure and pulmonary vascular resistance by 146 and 164 %, respectively. Pretreatment or therapy with tempol attenuated these increases. While APT increased RV + dP/dt (max), tempol infusions had no effects. APT increased RV MMP-9 (but not MMP-2) levels. In line with these findings, APT increased RV MMP activities, and this finding was confirmed by in situ zymography. APT increased the RV ROS levels and tempol infusion, before or after APT, and blunted APT-induced increases in MMP-9 levels, MMP activities, in situ MMP activities, and ROS levels in the RV. cTI concentrations increased after APT, and tempol attenuated these increases. RV oxidative stress after APT increases the RV MMP activities, leading to the degradation of sarcomeric proteins, including cTI. Antioxidant treatment may prevent MMP activation and protect against cardiomyocyte injury after APT.
Resumo:
We examined whether two functional polymorphisms (g.-1306 C> T and g.-735 C>T) in matrix metalloproteinase (MMP)-2 gene are associated with preeclampsia (PE) or gestational hypertension (GH), and whether they modify MMP-2 or tissue inhibitor of metalloproteinase (TIMP)-2 plasma concentrations in these hypertensive disorders of pregnancy. We studied 130 healthy pregnant (HP), 130 pregnant with GH, and 133 pregnant with PE. Genomic DNA was extracted from whole blood and genotypes for g.-1306 C>T and g.-735 C>T polymorphisms were determined by Real Time-PCR, using Taqman allele discrimination assays. Haplotypes were inferred using the PHASE program. Plasma MMP-2 and TIMP-2 concentrations were measured by ELISA. The main findings were that pregnant with PE have higher plasma MMP-2 and TIMP-2 concentrations than HP (P<0.05), although the MMP-2/TIMP-2 ratios were similar (P>0.05). Moreover, pregnant with GH have elevated plasma MMP-2 levels and MMP-2/TIMP-2 ratios compared to HP (P<0.05). While MMP-2 genotypes and haplotypes are not linked with hypertensive disorders of pregnancy, MMP-2 genotypes and haplotypes are associated with significant alterations in plasma MMP-2 and TIMP-2 concentrations in preeclampsia (P<0.05). Our findings may help to understand the relevance of MMP-2 and its genetic polymorphisms to the pathophysiology of hypertensive disorders of pregnancy. It is possible that patients with PE and the MMP-2 haplotype combining the C and T alleles for the g.-1306 C>T and g.-735 C>T polymorphisms may benefit from the use of MMPs inhibitors such as doxycycline. However, this possibility remains to be determined. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Proteolytic enzymes, such as matrix metalloproteinases (MMP), are associated to the progression of several cancers. They degrade extracellular components, which helps tumors to expand and cancer cells to escape from the primary site. Of all MMPs, gelatinases (MMP-2 and -9) and membrane type-1 matrix metalloproteinase (MT1-MMP, MMP-14), in particular, are often associated to more aggressive types of head and neck carcinomas as well as to a poorer outcome in patient survival. Although therapies during the last decades have advanced, the mortality of the disease is still rather high and adjuvant therapies are searched for continuously. MMP-9 and MT1-MMP are also involved in neo-angiogenesis, which is necessary for tumor expansion. For this reason, we have identified synthetic peptides-targeting gelatinases and MT1-MMP, and have also evaluated their anticancer effects in vitro and in vivo. Antigelatinolytic peptides effectively inhibited tongue-carcinoma cell invasion and reduced the growth of xenografted tumors. In tumor samples of mice that were treated with antigelatinolytic peptides, the micro-vessel density was significantly reduced. We also identified a novel MT1-MMP targeting peptide and demonstrated that it exerted anticancer effects against several malignant cell lines in vitro. The effects of MT1-MMP inhibition on tongue-squamous cell carcinomas were evaluated by using xenograft tumors, which it effectively inhibited. Tranexamic acid was also demonstrated to inhibit tongue-squamous cell carcinoma invasion, most probably due to its ability to prevent the plasmin-mediated activation of proMMP-9. Leukocyte β2 integrins are another interesting option when evaluating targets for the therapeutic intervention of inflammatory conditions or malignancies of hematopoietic origin, since β2 integrins are expressed mainly by leukocytes. We identified a novel technique for screening small-molecule libraries against β2 integrins, and by using this technique we identified a novel αMβ2 integrin-binding chemical (IMB-10). IMB-10 significantly enhances leukocyte adhesion and inhibits their motility. We also demonstrated that IMB-10 can be used to inhibit inflammation and lymphoma growth in vivo. Interestingly, IMB-10 also reduced leukocyte tumor infiltration and inhibited tumor invasion.