975 resultados para Mathematical techniques
Resumo:
Unlike the mathematical techniques adopted in classical cryptographic technology at higher protocol layers, it is shown that characteristics intrinsic to the physical layer can be exploited to secure useful information. It is shown that a retrodirective array can be made to operate more securely by incorporating directional modulation (DM) concepts. The presented new approach allows DM to operate in a multipath environment. Previously, DM systems could only operate in free space.
Resumo:
Os avanços tecnológicos e científicos, na área da saúde, têm vindo a aliar áreas como a Medicina e a Matemática, cabendo à ciência adequar de forma mais eficaz os meios de investigação, diagnóstico, monitorização e terapêutica. Os métodos desenvolvidos e os estudos apresentados nesta dissertação resultam da necessidade de encontrar respostas e soluções para os diferentes desafios identificados na área da anestesia. A índole destes problemas conduz, necessariamente, à aplicação, adaptação e conjugação de diferentes métodos e modelos das diversas áreas da matemática. A capacidade para induzir a anestesia em pacientes, de forma segura e confiável, conduz a uma enorme variedade de situações que devem ser levadas em conta, exigindo, por isso, intensivos estudos. Assim, métodos e modelos de previsão, que permitam uma melhor personalização da dosagem a administrar ao paciente e por monitorizar, o efeito induzido pela administração de cada fármaco, com sinais mais fiáveis, são fundamentais para a investigação e progresso neste campo. Neste contexto, com o objetivo de clarificar a utilização em estudos na área da anestesia de um ajustado tratamento estatístico, proponho-me abordar diferentes análises estatísticas para desenvolver um modelo de previsão sobre a resposta cerebral a dois fármacos durante sedação. Dados obtidos de voluntários serão utilizados para estudar a interação farmacodinâmica entre dois fármacos anestésicos. Numa primeira fase são explorados modelos de regressão lineares que permitam modelar o efeito dos fármacos no sinal cerebral BIS (índice bispectral do EEG – indicador da profundidade de anestesia); ou seja estimar o efeito que as concentrações de fármacos têm na depressão do eletroencefalograma (avaliada pelo BIS). Na segunda fase deste trabalho, pretende-se a identificação de diferentes interações com Análise de Clusters bem como a validação do respetivo modelo com Análise Discriminante, identificando grupos homogéneos na amostra obtida através das técnicas de agrupamento. O número de grupos existentes na amostra foi, numa fase exploratória, obtido pelas técnicas de agrupamento hierárquicas, e a caracterização dos grupos identificados foi obtida pelas técnicas de agrupamento k-means. A reprodutibilidade dos modelos de agrupamento obtidos foi testada através da análise discriminante. As principais conclusões apontam que o teste de significância da equação de Regressão Linear indicou que o modelo é altamente significativo. As variáveis propofol e remifentanil influenciam significativamente o BIS e o modelo melhora com a inclusão do remifentanil. Este trabalho demonstra ainda ser possível construir um modelo que permite agrupar as concentrações dos fármacos, com base no efeito no sinal cerebral BIS, com o apoio de técnicas de agrupamento e discriminantes. Os resultados desmontram claramente a interacção farmacodinâmica dos dois fármacos, quando analisamos o Cluster 1 e o Cluster 3. Para concentrações semelhantes de propofol o efeito no BIS é claramente diferente dependendo da grandeza da concentração de remifentanil. Em suma, o estudo demostra claramente, que quando o remifentanil é administrado com o propofol (um hipnótico) o efeito deste último é potenciado, levando o sinal BIS a valores bastante baixos.
Resumo:
Dissertação de natureza Científica para obtenção do grau de Mestre em Engenharia Civil
Resumo:
Nonlinearity is a charming element of nature and Nonlinear Science has now become one of the most important tools for the fundamental understanding of the nature. Solitons— solutions of a class of nonlinear partial differential equations — which propagate without spreading and having particle— like properties represent one of the most striking aspects of nonlinear phenomena. The study of wave propagation through nonlinear media has wide applications in different branches of physics.Different mathematical techniques have been introduced to study nonlinear systems. The thesis deals with the study of some of the aspects of electromagnetic wave propagation through nonlinear media, viz, plasma and ferromagnets, using reductive perturbation method. The thesis contains 6 chapters
Resumo:
The aim of this thesis is to narrow the gap between two different control techniques: the continuous control and the discrete event control techniques DES. This gap can be reduced by the study of Hybrid systems, and by interpreting as Hybrid systems the majority of large-scale systems. In particular, when looking deeply into a process, it is often possible to identify interaction between discrete and continuous signals. Hybrid systems are systems that have both continuous, and discrete signals. Continuous signals are generally supposed continuous and differentiable in time, since discrete signals are neither continuous nor differentiable in time due to their abrupt changes in time. Continuous signals often represent the measure of natural physical magnitudes such as temperature, pressure etc. The discrete signals are normally artificial signals, operated by human artefacts as current, voltage, light etc. Typical processes modelled as Hybrid systems are production systems, chemical process, or continuos production when time and continuous measures interacts with the transport, and stock inventory system. Complex systems as manufacturing lines are hybrid in a global sense. They can be decomposed into several subsystems, and their links. Another motivation for the study of Hybrid systems is the tools developed by other research domains. These tools benefit from the use of temporal logic for the analysis of several properties of Hybrid systems model, and use it to design systems and controllers, which satisfies physical or imposed restrictions. This thesis is focused in particular types of systems with discrete and continuous signals in interaction. That can be modelled hard non-linealities, such as hysteresis, jumps in the state, limit cycles, etc. and their possible non-deterministic future behaviour expressed by an interpretable model description. The Hybrid systems treated in this work are systems with several discrete states, always less than thirty states (it can arrive to NP hard problem), and continuous dynamics evolving with expression: with Ki ¡ Rn constant vectors or matrices for X components vector. In several states the continuous evolution can be several of them Ki = 0. In this formulation, the mathematics can express Time invariant linear system. By the use of this expression for a local part, the combination of several local linear models is possible to represent non-linear systems. And with the interaction with discrete events of the system the model can compose non-linear Hybrid systems. Especially multistage processes with high continuous dynamics are well represented by the proposed methodology. Sate vectors with more than two components, as third order models or higher is well approximated by the proposed approximation. Flexible belt transmission, chemical reactions with initial start-up and mobile robots with important friction are several physical systems, which profits from the benefits of proposed methodology (accuracy). The motivation of this thesis is to obtain a solution that can control and drive the Hybrid systems from the origin or starting point to the goal. How to obtain this solution, and which is the best solution in terms of one cost function subject to the physical restrictions and control actions is analysed. Hybrid systems that have several possible states, different ways to drive the system to the goal and different continuous control signals are problems that motivate this research. The requirements of the system on which we work is: a model that can represent the behaviour of the non-linear systems, and that possibilities the prediction of possible future behaviour for the model, in order to apply an supervisor which decides the optimal and secure action to drive the system toward the goal. Specific problems can be determined by the use of this kind of hybrid models are: - The unity of order. - Control the system along a reachable path. - Control the system in a safe path. - Optimise the cost function. - Modularity of control The proposed model solves the specified problems in the switching models problem, the initial condition calculus and the unity of the order models. Continuous and discrete phenomena are represented in Linear hybrid models, defined with defined eighth-tuple parameters to model different types of hybrid phenomena. Applying a transformation over the state vector : for LTI system we obtain from a two-dimensional SS a single parameter, alpha, which still maintains the dynamical information. Combining this parameter with the system output, a complete description of the system is obtained in a form of a graph in polar representation. Using Tagaki-Sugeno type III is a fuzzy model which include linear time invariant LTI models for each local model, the fuzzyfication of different LTI local model gives as a result a non-linear time invariant model. In our case the output and the alpha measure govern the membership function. Hybrid systems control is a huge task, the processes need to be guided from the Starting point to the desired End point, passing a through of different specific states and points in the trajectory. The system can be structured in different levels of abstraction and the control in three layers for the Hybrid systems from planning the process to produce the actions, these are the planning, the process and control layer. In this case the algorithms will be applied to robotics ¡V a domain where improvements are well accepted ¡V it is expected to find a simple repetitive processes for which the extra effort in complexity can be compensated by some cost reductions. It may be also interesting to implement some control optimisation to processes such as fuel injection, DC-DC converters etc. In order to apply the RW theory of discrete event systems on a Hybrid system, we must abstract the continuous signals and to project the events generated for these signals, to obtain new sets of observable and controllable events. Ramadge & Wonham¡¦s theory along with the TCT software give a Controllable Sublanguage of the legal language generated for a Discrete Event System (DES). Continuous abstraction transforms predicates over continuous variables into controllable or uncontrollable events, and modifies the set of uncontrollable, controllable observable and unobservable events. Continuous signals produce into the system virtual events, when this crosses the bound limits. If this event is deterministic, they can be projected. It is necessary to determine the controllability of this event, in order to assign this to the corresponding set, , controllable, uncontrollable, observable and unobservable set of events. Find optimal trajectories in order to minimise some cost function is the goal of the modelling procedure. Mathematical model for the system allows the user to apply mathematical techniques over this expression. These possibilities are, to minimise a specific cost function, to obtain optimal controllers and to approximate a specific trajectory. The combination of the Dynamic Programming with Bellman Principle of optimality, give us the procedure to solve the minimum time trajectory for Hybrid systems. The problem is greater when there exists interaction between adjacent states. In Hybrid systems the problem is to determine the partial set points to be applied at the local models. Optimal controller can be implemented in each local model in order to assure the minimisation of the local costs. The solution of this problem needs to give us the trajectory to follow the system. Trajectory marked by a set of set points to force the system to passing over them. Several ways are possible to drive the system from the Starting point Xi to the End point Xf. Different ways are interesting in: dynamic sense, minimum states, approximation at set points, etc. These ways need to be safe and viable and RchW. And only one of them must to be applied, normally the best, which minimises the proposed cost function. A Reachable Way, this means the controllable way and safe, will be evaluated in order to obtain which one minimises the cost function. Contribution of this work is a complete framework to work with the majority Hybrid systems, the procedures to model, control and supervise are defined and explained and its use is demonstrated. Also explained is the procedure to model the systems to be analysed for automatic verification. Great improvements were obtained by using this methodology in comparison to using other piecewise linear approximations. It is demonstrated in particular cases this methodology can provide best approximation. The most important contribution of this work, is the Alpha approximation for non-linear systems with high dynamics While this kind of process is not typical, but in this case the Alpha approximation is the best linear approximation to use, and give a compact representation.
Resumo:
Cascade is a multi-institution project studying the temporal and spatial organization of tropical convective systems. While cloud resolving numerical models can reproduce the observed diurnal cycle of such systems they are sensitive to the chosen resolution. As part of this effort, we are comparing results from the Met. Office Unified Model to data from the Global Earth Radiation Budget satellite instrument over the African Monsoon Interdisciplinary Analyses region of North Africa. We use a variety of mathematical techniques to study the outgoing radiation and the evolution of properties such as the cloud size distribution. The effectiveness of various model resolutions is tested with a view to determining the optimum balance between resolution and the need to reproduce the observations.
Resumo:
This article presents an overview of a transform method for solving linear and integrable nonlinear partial differential equations. This new transform method, proposed by Fokas, yields a generalization and unification of various fundamental mathematical techniques and, in particular, it yields an extension of the Fourier transform method.
Resumo:
One of the most pervasive classes of services needed to support e-Science applications are those responsible for the discovery of resources. We have developed a solution to the problem of service discovery in a Semantic Web/Grid setting. We do this in the context of bioinformatics, which is the use of computational and mathematical techniques to store, manage, and analyse the data from molecular biology in order to answer questions about biological phenomena. Our specific application is myGrid (www.mygrid.org.uk) that is developing open source, service-based middleware upon which bioinformatics applications can be built. myGrid is specifically targeted at developing open source high-level service Grid middleware for bioinformatics.
Resumo:
One of the most pervasive classes of services needed to support e-Science applications are those responsible for the discovery of resources. We have developed a solution to the problem of service discovery in a Semantic Web/Grid setting. We do this in the context of bioinformatics, which is the use of computational and mathematical techniques to store, manage, and analyse the data from molecular biology in order to answer questions about biological phenomena. Our specific application is myGrid (http: //www.mygrid.org.uk) that is developing open source, service-based middleware upon which bioin- formatics applications can be built. myGrid is specif- ically targeted at developing open source high-level service Grid middleware for bioinformatics.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Neste trabalho discute-se um arranjo experimental bastante simples e de baixo custo, cujo objetivo consiste em se exemplificar de forma concreta a aplicação de técnicas matemáticas envolvendo solução por séries infinitas destinadas ao estudo de determinado fenômeno físico. Esta prática desenvolvida e direcionada aos alunos de um curso de Graduação em Matemática, consiste basicamente de um estudo quantitativo relacionado ao comportamento oscilatório amortecido de um sistema constituído por uma massa acoplada a uma mola. Os resultados experimentais corroboraram muito bem a teoria fenomenológica e possibilitam a determinação numérica de uma constante física normalmente considerada desprezível, mencionada de passagem nos livros textos. Um fato de destaque deste trabalho referente ao fenômeno ondulatório estudado, ilimitado no tempo, mas limitado no espaço, é o de permitir uma boa discussão com os estudantes sobre o conceito de limite matemático.
Resumo:
We give a multidimensional extension of a one-dimensional integral inequality due to F. Carlson. The extension presented here involves Lp spaces with mixed norms in a very natural way. © 1984.
Resumo:
Transient non-Darcy forced convection on a flat plate embedded in a porous medium is investigated using the Forchheimer-extended Darcy law. A sudden uniform pressure gradient is applied along the flat plate, and at the same time, its wall temperature is suddenly raised to a high temperature. Both the momentum and energy equations are solved by retaining the unsteady terms. An exact velocity solution is obtained and substituted into the energy equation, which then is solved by means of a quasi-similarity transformation. The temperature field can be divided into the one-dimensional transient (downstream) region and the quasi-steady-state (upstream) region. Thus the transient local heat transfer coefficient can be described by connecting the quasi-steady-state solution and the one-dimensional transient solution. The non-Darcy porous inertia works to decrease the velocity level and the time required for reaching the steady-state velocity level. The porous-medium inertia delays covering of the plate by the steady-state thermal boundary layer. © 1990.
Resumo:
The nucleation and growth model, which is usually applied to switching phenomena, is adapted for explaining surface potential measurements on the P(VDF-TrFE) (polyvinylidene fluoride-trifluoroethylene) copolymer obtained in a constant current corona triode. It is shown that the growth is one-dimensional and that the nucleation rate is unimportant, probably because surface potential measurements take much longer than the switching ones. The surface potential data can therefore be accounted for by a growth model in which the velocity of growth varies exponentially with the electric field. Since hysteresis loops can be obtained from surface potential measurements, it is suggested that similar mechanisms can be used when treating switching and hysteresis phenomena, provided that account is taken of the difference in the time scale of the measurements.