993 resultados para Mathematical representations


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Si no tenemos en cuenta posibles procesos subyacentes con significado físico, químico, económico, etc., podemos considerar una serie temporal como un mero conjunto ordenado de valores y jugar con él algún inocente juego matemático como transformar dicho conjunto en otro objeto con la ayuda de una operación matemática para ver qué sucede: qué propiedades del conjunto original se conservan, cuáles se transforman y cómo, qué podemos decir de alguna de las dos representaciones matemáticas del objeto con sólo atender a la otra... Este ejercicio sería de cierto interés matemático por sí solo. Ocurre, además, que las series temporales son un método universal de extraer información de sistemas dinámicos en cualquier campo de la ciencia. Esto hace ganar un inesperado interés práctico al juego matemático anteriormente descrito, ya que abre la posibilidad de analizar las series temporales (vistas ahora como evolución temporal de procesos dinámicos) desde una nueva perspectiva. Hemos para esto de asumir la hipótesis de que la información codificada en la serie original se conserva de algún modo en la transformación (al menos una parte de ella). El interés resulta completo cuando la nueva representación del objeto pertencece a un campo de la matemáticas relativamente maduro, en el cual la información codificada en dicha representación puede ser descodificada y procesada de manera efectiva. ABSTRACT Disregarding any underlying process (and therefore any physical, chemical, economical or whichever meaning of its mere numeric values), we can consider a time series just as an ordered set of values and play the naive mathematical game of turning this set into a different mathematical object with the aids of an abstract mapping, and see what happens: which properties of the original set are conserved, which are transformed and how, what can we say about one of the mathematical representations just by looking at the other... This exercise is of mathematical interest by itself. In addition, it turns out that time series or signals is a universal method of extracting information from dynamical systems in any field of science. Therefore, the preceding mathematical game gains some unexpected practical interest as it opens the possibility of analyzing a time series (i.e. the outcome of a dynamical process) from an alternative angle. Of course, the information stored in the original time series should be somehow conserved in the mapping. The motivation is completed when the new representation belongs to a relatively mature mathematical field, where information encoded in such a representation can be effectively disentangled and processed. This is, in a nutshell, a first motivation to map time series into networks.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Granulation is one of the fundamental operations in particulate processing and has a very ancient history and widespread use. Much fundamental particle science has occurred in the last two decades to help understand the underlying phenomena. Yet, until recently the development of granulation systems was mostly based on popular practice. The use of process systems approaches to the integrated understanding of these operations is providing improved insight into the complex nature of the processes. Improved mathematical representations, new solution techniques and the application of the models to industrial processes are yielding better designs, improved optimisation and tighter control of these systems. The parallel development of advanced instrumentation and the use of inferential approaches provide real-time access to system parameters necessary for improvements in operation. The use of advanced models to help develop real-time plant diagnostic systems provides further evidence of the utility of process system approaches to granulation processes. This paper highlights some of those aspects of granulation. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Este estudo tem como objectivo investigar o papel que as representações, construídas por alunos do 1.o ano de escolaridade, desempenham na resolução de problemas de Matemática. Mais concretamente, a presente investigação procura responder às seguintes questões: Que representações preferenciais utilizam os alunos para resolver problemas? De que forma é que as diferentes representações são influenciadas pelas estratégias de resolução de problemas utilizadas pelos alunos? Que papéis têm os diferentes tipos de representação na resolução dos problemas? Nesta investigação assume-se que a resolução de problemas constitui uma actividade muito importante na aprendizagem da Matemática no 1.o Ciclo do Ensino Básico. Os problemas devem ser variados, apelar a estratégias diversificadas de resolução e permitir diferentes representações por parte dos alunos. As representações cativas, icónicas e simbólicas constituem importantes ferramentas para os alunos organizarem, registarem e comunicarem as suas ideias matemáticas, nomeadamente no âmbito da resolução de problemas, servindo igualmente de apoio à compreensão de conceitos e relações matemáticas. A metodologia de investigação segue uma abordagem interpretativa tomando por design o estudo de caso. Trata-se simultaneamente de uma investigação sobre a própria prática, correspondendo os quatro estudos de caso a quatro alunos da turma de 1.0 ano de escolaridade da investigadora. A recolha de dados teve lugar durante o ano lectivo 2007/2008 e recorreu à observação, à análise de documentos, a diários, a registos áudio/vídeo e ainda a conversas com os alunos. A análise de dados que, numa primeira fase, acompanhou a recolha de dados, teve como base o problema e as questões da investigação bem como o referencial teórico que serviu de suporte à investigação. Com base no referencial teórico e durante o início do processo de análise, foram definidas as categorias de análise principais, sujeitas posteriormente a um processo de adequação e refinamento no decorrer da análise e tratamento dos dados recolhidos -com vista à construção dos casos em estudo. Os resultados desta investigação apontam as representações do tipo icónico e as do tipo simbólico como as representações preferenciais dos alunos, embora sejam utilizadas de formas diferentes, com funções distintas e em contextos diversos. Os elementos simbólicos apoiam-se frequentemente em elementos icónicos, sendo estes últimos que ajudam os alunos a descompactar o problema e a interpretá-lo. Nas representações icónicas enfatiza-se o papel do diagrama, o qual constitui uma preciosa ferramenta de apoio ao raciocínio matemático. Conclui-se ainda que enquanto as representações activas dão mais apoio a estratégias de resolução que envolvem simulação, as representações icónicas e simbólicas são utilizadas com estratégias diversificadas. As representações construídas, com papéis e funções diferentes entre si, e que desempenham um papel crucial na correcta interpretação e resolução dos problemas, parecem estar directamente relacionadas com as caraterísticas da tarefa proposta no que diz respeito às estruturas matemáticas envolvidas. ABSTRACT; The objective of the present study is to investigate the role of the representations constructed by 1st grade students in mathematical problem solving. More specifically, this research is oriented by the following questions: Which representations are preferably used by students to solve problems? ln which way the strategies adopted by the students in problem solving influence those distinct representations? What is the role of the distinct types of representation in the problems solving process? ln this research it is assumed that the resolution of problems is a very important activity in the Mathematics learning at the first cycle of basic education. The problems must be varied, appealing to diverse strategies of resolution and allow students to construct distinct representations. The active, iconic and symbolic representations are important tools for students to organize, to record and to communicate their mathematical ideas, particularly in problem solving context, as well as supporting the understanding of mathematical concepts and relationships. The adopted research methodology follows an interpretative approach, and was developed in the context of the researcher classroom, originating four case studies corresponding to four 1 st grade students of the researcher's class. Data collection was carried out during the academic year of 2007/2008 and was based on observation, analysis of documents, diaries, audio and video records and informal conversations with students. The initial data analysis was based on the problems and issues of research, as well in the theoretical framework that supports it. The main categories of analysis were defined based on the theoretical framework, and were subjected to a process of adaptation and refining during data processing and analysis aiming the -case studies construction. The results show that student's preferential representations are the iconic and the symbolic, although these types of representations are used in different ways, with different functions and in different contexts. The symbolic elements are often supported by iconic elements, the latter helping students to unpack the problem and interpret it. ln the iconic representations the role of the diagrams is emphasized, consisting in a valuable tool to support the mathematical reasoning. One can also conclude that while the active representations give more support to the resolution strategies involving simulation, the iconic and symbolic representations are preferably used with different strategies. The representations constructed with distinct roles and functions, are crucial in the proper interpretation and resolution of problems, and seem to be directly related to the characteristics of the proposed task with regard to the mathematical structures involved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Crop models are simplified mathematical representations of the interacting biological and environmental components of the dynamic soil–plant–environment system. Sorghum crop modeling has evolved in parallel with crop modeling capability in general, since its origins in the 1960s and 1970s. Here we briefly review the trajectory in sorghum crop modeling leading to the development of advanced models. We then (i) overview the structure and function of the sorghum model in the Agricultural Production System sIMulator (APSIM) to exemplify advanced modeling concepts that suit both agronomic and breeding applications, (ii) review an example of use of sorghum modeling in supporting agronomic management decisions, (iii) review an example of the use of sorghum modeling in plant breeding, and (iv) consider implications for future roles of sorghum crop modeling. Modeling and simulation provide an avenue to explore consequences of crop management decision options in situations confronted with risks associated with seasonal climate uncertainties. Here we consider the possibility of manipulating planting configuration and density in sorghum as a means to manipulate the productivity–risk trade-off. A simulation analysis of decision options is presented and avenues for its use with decision-makers discussed. Modeling and simulation also provide opportunities to improve breeding efficiency by either dissecting complex traits to more amenable targets for genetics and breeding, or by trait evaluation via phenotypic prediction in target production regions to help prioritize effort and assess breeding strategies. Here we consider studies on the stay-green trait in sorghum, which confers yield advantage in water-limited situations, to exemplify both aspects. The possible future roles of sorghum modeling in agronomy and breeding are discussed as are opportunities related to their synergistic interaction. The potential to add significant value to the revolution in plant breeding associated with genomic technologies is identified as the new modeling frontier.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A dynamical system can exhibit structure on multiple levels. Different system representations can capture different elements of a dynamical system's structure. We consider LTI input-output dynamical systems and present four representations of structure: complete computational structure, subsystem structure, signal structure, and input output sparsity structure. We then explore some of the mathematical relationships that relate these different representations of structure. In particular, we show that signal and subsystem structure are fundamentally different ways of representing system structure. A signal structure does not always specify a unique subsystem structure nor does subsystem structure always specify a unique signal structure. We illustrate these concepts with a numerical example. © 2011 AACC American Automatic Control Council.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The study of operations on representations of objects is well documented in the realm of spatial engineering. However, the mathematical structure and formal proof of these operational phenomena are not thoroughly explored. Other works have often focused on query-based models that seek to order classes and instances of objects in the form of semantic hierarchies or graphs. In some models, nodes of graphs represent objects and are connected by edges that represent different types of coarsening operators. This work, however, studies how the coarsening operator "simplification" can manipulate partitions of finite sets, independent from objects and their attributes. Partitions that are "simplified first have a collection of elements filtered (removed), and then the remaining partition is amalgamated (some sub-collections are unified). Simplification has many interesting mathematical properties. A finite composition of simplifications can also be accomplished with some single simplification. Also, if one partition is a simplification of the other, the simplified partition is defined to be less than the other partition according to the simp relation. This relation is shown to be a partial-order relation based on simplification. Collections of partitions can not only be proven to have a partial- order structure, but also have a lattice structure and are complete. In regard to a geographic information system (GIs), partitions related to subsets of attribute domains for objects are called views. Objects belong to different views based whether or not their attribute values lie in the underlying view domain. Given a particular view, objects with their attribute n-tuple codings contained in the view are part of the actualization set on views, and objects are labeled according to the particular subset of the view in which their coding lies. Though the scope of the work does not mainly focus on queries related directly to geographic objects, it provides verification for the existence of particular views in a system with this underlying structure. Given a finite attribute domain, one can say with mathematical certainty that different views of objects are partially ordered by simplification, and every collection of views has a greatest lower bound and least upper bound, which provides the validity for exploring queries in this regard.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is a report of students' responses to instruction which was based on the use of concrete representations to solve linear equations. The sample consisted of 21 Grade 8 students from a middle-class suburban state secondary school with a reputation for high academic standards and innovative mathematics teaching. The students were interviewed before and after instruction. Interviews and classroom interactions were observed and videotaped. A qualitative analysis of the responses revealed that students did not use the materials in solving problems. The increased processing load caused by concrete representations is hypothesised as a reason.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Models of word meaning, built from a corpus of text, have demonstrated success in emulating human performance on a number of cognitive tasks. Many of these models use geometric representations of words to store semantic associations between words. Often word order information is not captured in these models. The lack of structural information used by these models has been raised as a weakness when performing cognitive tasks. This paper presents an efficient tensor based approach to modelling word meaning that builds on recent attempts to encode word order information, while providing flexible methods for extracting task specific semantic information.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the increasing number of XML documents in varied domains, it has become essential to identify ways of finding interesting information from these documents. Data mining techniques were used to derive this interesting information. Mining on XML documents is impacted by its model due to the semi-structured nature of these documents. Hence, in this chapter we present an overview of the various models of XML documents, how these models were used for mining and some of the issues and challenges in these models. In addition, this chapter also provides some insights into the future models of XML documents for effectively capturing the two important features namely structure and content of XML documents for mining.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Students’ text, symbols, and graphics give teachers a glimpse into mathematical thinking associated with investigating the Peas problem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The literacy demands of mathematics are very different to those in other subjects (Gough, 2007; O'Halloran, 2005; Quinnell, 2011; Rubenstein, 2007) and much has been written on the challenges that literacy in mathematics poses to learners (Abedi and Lord, 2001; Lowrie and Diezmann, 2007, 2009; Rubenstein, 2007). In particular, a diverse selection of visuals typifies the field of mathematics (Carter, Hipwell and Quinnell, 2012), placing unique literacy demands on learners. Such visuals include varied tables, graphs, diagrams and other representations, all of which are used to communicate information.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

If the land sector is to make significant contributions to mitigating anthropogenic greenhouse gas (GHG) emissions in coming decades, it must do so while concurrently expanding production of food and fiber. In our view, mathematical modeling will be required to provide scientific guidance to meet this challenge. In order to be useful in GHG mitigation policy measures, models must simultaneously meet scientific, software engineering, and human capacity requirements. They can be used to understand GHG fluxes, to evaluate proposed GHG mitigation actions, and to predict and monitor the effects of specific actions; the latter applications require a change in mindset that has parallels with the shift from research modeling to decision support. We compare and contrast 6 agro-ecosystem models (FullCAM, DayCent, DNDC, APSIM, WNMM, and AgMod), chosen because they are used in Australian agriculture and forestry. Underlying structural similarities in the representations of carbon flows though plants and soils in these models are complemented by a diverse range of emphases and approaches to the subprocesses within the agro-ecosystem. None of these agro-ecosystem models handles all land sector GHG fluxes, and considerable model-based uncertainty exists for soil C fluxes and enteric methane emissions. The models also show diverse approaches to the initialisation of model simulations, software implementation, distribution, licensing, and software quality assurance; each of these will differentially affect their usefulness for policy-driven GHG mitigation prediction and monitoring. Specific requirements imposed on the use of models by Australian mitigation policy settings are discussed, and areas for further scientific development of agro-ecosystem models for use in GHG mitigation policy are proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work grew out of an attempt to understand a conjectural remark made by Professor Kyoji Saito to the author about a possible link between the Fox-calculus description of the symplectic structure on the moduli space of representations of the fundamental group of surfaces into a Lie group and pairs of mutually dual sets of generators of the fundamental group. In fact in his paper [3] , Prof. Kyoji Saito gives an explicit description of the system of dual generators of the fundamental group.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Para-Bose commutation relations are related to the SL(2,R) Lie algebra. The irreducible representation [script D]alpha of the para-Bose system is obtained as the direct sum Dbeta[direct-sum]Dbeta+1/2 of the representations of the SL(2,R) Lie algebra. The position and momentum eigenstates are then obtained in this representation [script D]alpha, using the matrix mechanical method. The orthogonality, completeness, and the overlap of these eigenstates are derived. The momentum eigenstates are also derived using the wave mechanical method by specifying the domain of the definition of the momentum operator in addition to giving it a formal differential expression. By a careful consideration in this manner we find that the two apparently different solutions obtained by Ohnuki and Kamefuchi in this context are actually unitarily equivalent. Journal of Mathematical Physics is copyrighted by The American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this article is to characterize unitary increment process by a quantum stochastic integral representation on symmetric Fock space. Under certain assumptions we have proved its unitary equivalence to a Hudson-Parthasarathy flow.