994 resultados para Mass campaign
Resumo:
El período de más incidencia de la poliomielitis en España corresponde a los años de 1950 a 1963. La vacuna inactivada antipolio de Salk estuvo disponible a partir de 1955 y varios países la adoptaron para combatir la enfermedad. La actitud de las autoridades sanitarias españolas para abordar el problema fue tibia e ineficaz, sin dar una respuesta decidida para implementar la vacuna de modo sistemático. Hemos realizado un estudio de caso explorando las noticias sobre polio recogidas en dos semanarios de la provincia de Guadalajara durante el decenio de 1958–1967. Los resultados revelan una acumulación de informaciones sesgada y contradictoria, que refleja la incapacidad para tomar decisiones. Desde la negación de la enfermedad y las dudas sobre la vacuna Salk en el primer período, se pasa a la exaltación de la vacuna oral de Sabin, cuando ésta mostró su evidencia tras aplicarla en la campaña de 1963–1964, y que las autoridades se atribuyeron este éxito tardío con una fuerte propaganda mediática.
Resumo:
This cross-sectional study of a 45 to 60 year old Brisbane population examined socioeconomic differences in campaign reach, understanding of health language, and effectiveness, of a recent mass media health promotion campaign. Lower socioeconomic groups were reached significantly less and understood significantly less of the health language than higher socioeconomic groups thus contributing to the widening of the health inequality gap.
Resumo:
The Combined Jewish Philanthropies (CJP) of Boston, Massachusetts is the oldest federated Jewish philanthropy in the United States. The current incarnation of CJP was formed in 1960, when two separate federated philanthropies – the Combined Jewish Appeal and Associated Jewish Philanthropies – merged to create a single organization dedicated to serving the needs of Boston’s Jewish community. CJP’s records contain the history of several other organizations, from the forerunners of the current Federation to the Jewish institutions supported by CJP. Their beginnings can be traced to the founding of the United Hebrew Benevolent Association (UHBA) in 1864 at the Pleasant Street Synagogue (now Temple Israel.) This collection contains meeting minutes, correspondence, photographs, scrapbooks, financial documents and ledgers, appeal information, publicity, programs, brochures and other written documents relating CJP’s history.
Resumo:
During the second phase of the Arabian Sea Monsoon Experiment (ARMEX-II), extensive measurements of spectral aerosol optical depth, mass concentration, and mass size distribution of ambient aerosols as well as mass concentration of aerosol black carbon (BC) were made onboard a research vessel during the intermonsoon period (i.e., when the monsoon winds are in transition from northeasterlies to westerlies/ southwesterlies) over the Arabian Sea (AS) adjoining the Indian Peninsula. Simultaneous measurements of spectral aerosol optical depths (AODs) were made at different regions over the adjoining Indian landmass. Mean AODs (at 500-nm wavelength) over the ocean (similar to0.44) were comparable to those over the coastal land (similar to0.47), but were lower than the values observed over the plateau regions of central Indian Peninsula (similar to0.61). The aerosol properties were found to respond distinctly with respect to change in the trajectories, with higher optical depths and flatter AOD spectra associated with trajectories indicating advection from west Asia, and northwest and west-coastal India. On average, BC constituted only similar to2.2% to total aerosol mass compared to the climatological values of similar to6% over the coastal land during the same season. These data are used to characterize the physical properties of aerosols and to assess the resulting short-wave direct aerosol forcing. The mean values were similar to27 W m(-2) at the surface and -12 W m(-2) at the top of the atmosphere (TOA), resulting in a net atmospheric forcing of +15 W m(-2). The forcing also depended on the region from where the advection predominates. The surface and atmospheric forcing were in the range -40 to -57 W m(-2) and +27 to +39 W m(-2), respectively, corresponding to advection from the west Asian and western coastal India where they were as low as -19 and +10 W m(-2), respectively, when the advection was mainly from the Bay of Bengal and from central/peninsular India. In all these cases, the net atmospheric forcing (heating) efficiency was lower than the values reported for northern Indian Ocean during northern winter, which is attributed to the reduced BC mass fraction.
Resumo:
This study examines differences in the surface black carbon (BC) aerosol loading between the Bay of Bengal (BoB) and the Arabian Sea (AS) and identifies dominant sources of BC in South Asia and surrounding regions during March-May 2006 (Integrated Campaign for Aerosols, Gases and Radiation Budget, ICARB) period. A total of 13 BC tracers are introduced in the Weather Research and Forecasting Model coupled with Chemistry to address these objectives. The model reproduced the temporal and spatial variability of BC distribution observed over the AS and the BoB during the ICARB ship cruise and captured spatial variability at the inland sites. In general, the model underestimates the observed BC mass concentrations. However, the model-observation discrepancy in this study is smaller compared to previous studies. Model results show that ICARB measurements were fairly well representative of the AS and the BoB during the pre-monsoon season. Elevated BC mass concentrations in the BoB are due to 5 times stronger influence of anthropogenic emissions on the BoB compared to the AS. Biomass burning in Burma also affects the BoB much more strongly than the AS. Results show that anthropogenic and biomass burning emissions, respectively, accounted for 60 and 37% of the average +/- standard deviation (representing spatial and temporal variability) BC mass concentration (1341 +/- 2353 ng m(-3)) in South Asia. BC emissions from residential (61 %) and industrial (23 %) sectors are the major anthropogenic sources, except in the Himalayas where vehicular emissions dominate. We find that regional-scale transport of anthropogenic emissions contributes up to 25% of BC mass concentrations in western and eastern India, suggesting that surface BC mass concentrations cannot be linked directly to the local emissions in different regions of South Asia.
Resumo:
This thesis presents composition measurements for atmospherically relevant inorganic and organic aerosol from laboratory and ambient measurements using the Aerodyne aerosol mass spectrometer. Studies include the oxidation of dodecane in the Caltech environmental chambers, and several aircraft- and ground-based field studies, which include the quantification of wildfire emissions off the coast of California, and Los Angeles urban emissions.
The oxidation of dodecane by OH under low NO conditions and the formation of secondary organic aerosol (SOA) was explored using a gas-phase chemical model, gas-phase CIMS measurements, and high molecular weight ion traces from particle- phase HR-TOF-AMS mass spectra. The combination of these measurements support the hypothesis that particle-phase chemistry leading to peroxyhemiacetal formation is important. Positive matrix factorization (PMF) was applied to the AMS mass spectra which revealed three factors representing a combination of gas-particle partitioning, chemical conversion in the aerosol, and wall deposition.
Airborne measurements of biomass burning emissions from a chaparral fire on the central Californian coast were carried out in November 2009. Physical and chemical changes were reported for smoke ages 0 – 4 h old. CO2 normalized ammonium, nitrate, and sulfate increased, whereas the normalized OA decreased sharply in the first 1.5 - 2 h, and then slowly increased for the remaining 2 h (net decrease in normalized OA). Comparison to wildfire samples from the Yucatan revealed that factors such as relative humidity, incident UV radiation, age of smoke, and concentration of emissions are important for wildfire evolution.
Ground-based aerosol composition is reported for Pasadena, CA during the summer of 2009. The OA component, which dominated the submicron aerosol mass, was deconvolved into hydrocarbon-like organic aerosol (HOA), semi-volatile oxidized organic aerosol (SVOOA), and low-volatility oxidized organic aerosol (LVOOA). The HOA/OA was only 0.08–0.23, indicating that most of Pasadena OA in the summer months is dominated by oxidized OA resulting from transported emissions that have undergone photochemistry and/or moisture-influenced processing, as apposed to only primary organic aerosol emissions. Airborne measurements and model predictions of aerosol composition are reported for the 2010 CalNex field campaign.
Resumo:
In order to determine the size-resolved chemical composition of single particles in real-time an ATOFMS was deployed at urban background sites in Paris and Barcelona during the MEGAPOLI and SAPUSS monitoring campaigns respectively. The particle types detected during MEGAPOLI included several carbonaceous species, metal-containing types and sea-salt. Elemental carbon particle types were highly abundant, with 86% due to fossil fuel combustion and 14% attributed to biomass burning. Furthermore, 79% of the EC was apportioned to local emissions and 21% to continental transport. The carbonaceous particle types were compared with quantitative measurements from other instruments, and while direct correlations using particle counts were poor, scaling of the ATOFMS counts greatly improved the relationship. During SAPUSS carbonaceous species, sea-salt, dust, vegetative debris and various metal-containing particle types were identified. Throughout the campaign the site was influenced by air masses altering the composition of particles detected. During North African air masses the city was heavily influenced by Saharan dust. A regional stagnation was also observed leading to a large increase in carbonaceous particle counts. While the ATOFMS provides a list of particle types present during the measurement campaigns, the data presented is not directly quantitative. The quantitative response of the ATOFMS to metals was examined by comparing the ion signals within particle mass spectra and to hourly mass concentrations of; Na, K, Ca, Ti, V, Cr, Mn, Fe, Zn and Pb. The ATOFMS was found to have varying correlations with these metals depending on sampling issues such as matrix effects. The strongest correlations were observed for Al, Fe, Zn, Mn and Pb. Overall the results of this work highlight the excellent ability of the ATOFMS in providing composition and mixing state information on atmospheric particles at high time resolution. However they also show its limitations in delivering quantitative information directly.
Resumo:
We present the one-year long observing campaign of SN 2012A which exploded in the nearby (9.8 Mpc) irregular galaxy NGC 3239. The photometric evolution is that of a normal type IIP supernova. The absolute maximum magnitude, with MB = -16.23 +- 0.16 mag. SN2012A reached a peak luminosity of about 2X10**42 erg/s, which is brighter than those of other SNe with a similar 56Ni mass. The latter was estimated from the luminosity in the exponential tail of the light curve and found to be M(56Ni) = 0.011 +-0.004 Msun. The spectral evolution of SN 2012A is also typical of SN IIP, from the early spectra dominated by a blue continuum and very broad (~10**4 km/s) Balmer lines, to the late-photospheric spectra characterized by prominent P-Cygni features of metal lines (Fe II, Sc II, Ba II, Ti II, Ca II, Na ID). The photospheric velocity is moderately low, ~3X10**3 km/s at 50 days, for the low optical depth metal lines. The nebular spectrum obtained 394 days after the shock breakout shows the typical features of SNe IIP and the strength of the [O I] doublet suggests a progenitor of intermediate mass, similar to SN 2004et (~15 Msun). A candidate progenitor for SN 2012A has been identified in deep, pre-explosion K'-band Gemini North (NIRI) images, and found to be consistent with a star with a bolometric magnitude -7.08+-0.36 (log L/Lsun = 4.73 +- 0.14$ dex). The magnitude of the recovered progenitor in archival images points toward a moderate-mass 10.5 (-2/+4.5) Msun star as the precursor of SN 2012A. The explosion parameters and progenitor mass were also estimated by means of a hydrodynamical model, fitting the bolometric light curve, the velocity and the temperature evolution. We found a best fit for a kinetic energy of 0.48 foe, an initial radius of 1.8X10**13 cm and ejecta mass of 12.5 Msun.
Resumo:
We present the results of a photometric and spectroscopic monitoring campaign of SN 2012ec, which exploded in the spiral galaxy NGC 1084, during the photospheric phase. The photometric light curve exhibits a plateau with luminosity L = 0.9 x 10(42) erg s(-1) and duration similar to 90 d, which is somewhat shorter than standard Type II-P supernovae (SNe). We estimate the nickel mass M(Ni-56) = 0.040 +/- 0.015 M-circle dot from the luminosity at the beginning of the radioactive tail of the light curve. The explosion parameters of SN 2012ec were estimated from the comparison of the bolometric light curve and the observed temperature and velocity evolution of the ejecta with predictions from hydrodynamical models. We derived an envelope mass of 12.6 M-circle dot, an initial progenitor radius of 1.6 x 10(13) cm and an explosion energy of 1.2 foe. These estimates agree with an independent study of the progenitor star identified in pre-explosion images, for which an initial mass of M = 14-22 M-circle dot was determined. We have applied the same analysis to two other Type II-P SNe (SNe 2012aw and 2012A), and carried out a comparison with the properties of SN 2012ec derived in this paper. We find a reasonable agreement between the masses of the progenitors obtained from pre-explosion images and masses derived from hydrodynamical models. We estimate the distance to SN 2012ec with the standardized candle method (SCM) and compare it with other estimates based on other primary and secondary indicators. SNe 2012A, 2012aw and 2012ec all follow the standard relations for the SCM for the use of Type II-P SNe as distance indicators.
Resumo:
We present an analysis of trace gas correlations in the lowermost stratosphere. In‐situ aircraft measurements of CO, N2O, NOy and O3, obtained during the STREAM 1997 winter campaign, have been used to investigate the role of cross‐tropopause mass exchange on tracer‐tracer relations. At altitudes several kilometers above the local tropopause, undisturbed stratospheric air was found with NOy/NOy * ratios close to unity, NOy/O3 about 0.003–0.006 and CO mixing ratios as low as 20 ppbv (NOy * is a proxy for total reactive nitrogen derived from NOy–N2O relations measured in the stratosphere). Mixing of tropospheric air into the lowermost stratosphere has been identified by enhanced ratios of NOy/NOy * and NOy/O3, and from scatter plots of CO versus O3. The enhanced NOy/O3 ratio in the lowermost stratospheric mixing zone points to a reduced efficiency of O3 formation from aircraft NOx emissions.
Resumo:
Following on from the companion study (Johnson et al., 2006), a photochemical trajectory model (PTM) has been used to simulate the chemical composition of organic aerosol for selected events during the 2003 TORCH (Tropospheric Organic Chemistry Experiment) field campaign. The PTM incorporates the speciated emissions of 124 nonmethane anthropogenic volatile organic compounds (VOC) and three representative biogenic VOC, a highly-detailed representation of the atmospheric degradation of these VOC, the emission of primary organic aerosol (POA) material and the formation of secondary organic aerosol (SOA) material. SOA formation was represented by the transfer of semi and non-volatile oxidation products from the gas-phase to a condensed organic aerosol-phase, according to estimated thermodynamic equilibrium phase-partitioning characteristics for around 2000 reaction products. After significantly scaling all phase-partitioning coefficients, and assuming a persistent background organic aerosol (both required in order to match the observed organic aerosol loadings), the detailed chemical composition of the simulated SOA has been investigated in terms of intermediate oxygenated species in the Master Chemical Mechanism, version 3.1 ( MCM v3.1). For the various case studies considered, 90% of the simulated SOA mass comprises between ca. 70 and 100 multifunctional oxygenated species derived, in varying amounts, from the photooxidation of VOC of anthropogenic and biogenic origin. The anthropogenic contribution is dominated by aromatic hydrocarbons and the biogenic contribution by alpha-and beta-pinene (which also constitute surrogates for other emitted monoterpene species). Sensitivity in the simulated mass of SOA to changes in the emission rates of anthropogenic and biogenic VOC has also been investigated for 11 case study events, and the results have been compared to the detailed chemical composition data. The role of accretion chemistry in SOA formation, and its implications for the results of the present investigation, is discussed.
Resumo:
A photochemical trajectory model has been used to simulate the chemical evolution of air masses arriving at the TORCH field campaign site in the southern UK during late July and August 2003, a period which included a widespread and prolonged photochemical pollution episode. The model incorporates speciated emissions of 124 nonmethane anthropogenic VOC and three representative biogenic VOC, coupled with a comprehensive description of the chemistry of their degradation. A representation of the gas/aerosol absorptive partitioning of ca. 2000 oxygenated organic species generated in the Master Chemical Mechanism (MCM v3.1) has been implemented, allowing simulation of the contribution to organic aerosol (OA) made by semi- and non-volatile products of VOC oxidation; emissions of primary organic aerosol (POA) and elemental carbon (EC) are also represented. Simulations of total OA mass concentrations in nine case study events (optimised by comparison with observed hourly-mean mass loadings derived from aerosol mass spectrometry measurements) imply that the OA can be ascribed to three general sources: (i) POA emissions; (ii) a '' ubiquitous '' background concentration of 0.7 mu g m(-3); and (iii) gas-to-aerosol transfer of lower volatility products of VOC oxidation generated by the regional scale processing of emitted VOC, but with all partitioning coefficients increased by a species-independent factor of 500. The requirement to scale the partitioning coefficients, and the implied background concentration, are both indicative of the occurrence of chemical processes within the aerosol which allow the oxidised organic species to react by association and/or accretion reactions which generate even lower volatility products, leading to a persistent, non-volatile secondary organic aerosol (SOA). The contribution of secondary organic material to the simulated OA results in significant elevations in the simulated ratio of organic carbon (OC) to EC, compared with the ratio of 1.1 assigned to the emitted components. For the selected case study events, [OC]/[EC] is calculated to lie in the range 2.7-9.8, values which are comparable with the high end of the range reported in the literature.