990 resultados para Markov states
Resumo:
The problems encountered when using traditional rectangular pulse hierarchical point processmodels for fine temporal resolution and the growing number of available tip-time records suggest that rainfall increments from tipping-bucket gauges be modelled directly. Poisson processes are used with an arrival rate modulated by a Markov chain in Continuous time. The paper shows how, by using two or three states for this chain, much of the structure of the rainfall intensity distribution and the wet/dry sequences can be represented for time-scales as small as 5 minutes.
Resumo:
This paper proposes a continuous time Markov chain (CTMC) based sequential analytical approach for composite generation and transmission systems reliability assessment. The basic idea is to construct a CTMC model for the composite system. Based on this model, sequential analyses are performed. Various kinds of reliability indices can be obtained, including expectation, variance, frequency, duration and probability distribution. In order to reduce the dimension of the state space, traditional CTMC modeling approach is modified by merging all high order contingencies into a single state, which can be calculated by Monte Carlo simulation (MCS). Then a state mergence technique is developed to integrate all normal states to further reduce the dimension of the CTMC model. Moreover, a time discretization method is presented for the CTMC model calculation. Case studies are performed on the RBTS and a modified IEEE 300-bus test system. The results indicate that sequential reliability assessment can be performed by the proposed approach. Comparing with the traditional sequential Monte Carlo simulation method, the proposed method is more efficient, especially in small scale or very reliable power systems.
Resumo:
Seldom have studies taken account of changes in lifestyle habits in the elderly, or investigated their impact on disease-free life expectancy (LE) and LE with cardiovascular disease (CVD). Using data on subjects aged 50+ years from three European cohorts (RCPH, ESTHER and Tromsø), we used multi-state Markov models to calculate the independent and joint effects of smoking, physical activity, obesity and alcohol consumption on LE with and without CVD. Men and women aged 50 years who have a favourable lifestyle (overweight but not obese, light/moderate drinker, non-smoker and participates in vigorous physical activity) lived between 7.4 (in Tromsø men) and 15.7 (in ESTHER women) years longer than those with an unfavourable lifestyle (overweight but not obese, light/moderate drinker, smoker and does not participate in physical activity). The greater part of the extra life years was in terms of "disease-free" years, though a healthy lifestyle was also associated with extra years lived after a CVD event. There are sizeable benefits to LE without CVD and also for survival after CVD onset when people favour a lifestyle characterized by salutary behaviours. Remaining a non-smoker yielded the greatest extra years in overall LE, when compared to the effects of routinely taking physical activity, being overweight but not obese, and drinking in moderation. The majority of the overall LE benefit is in disease free years. Therefore, it is important for policy makers and the public to know that prevention through maintaining a favourable lifestyle is "never too late".
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Finance from the NOVA – School of Business and Economics
Resumo:
We propose an alternate parameterization of stationary regular finite-state Markov chains, and a decomposition of the parameter into time reversible and time irreversible parts. We demonstrate some useful properties of the decomposition, and propose an index for a certain type of time irreversibility. Two empirical examples illustrate the use of the proposed parameter, decomposition and index. One involves observed states; the other, latent states.
Resumo:
Biologists frequently attempt to infer the character states at ancestral nodes of a phylogeny from the distribution of traits observed in contemporary organisms. Because phylogenies are normally inferences from data, it is desirable to account for the uncertainty in estimates of the tree and its branch lengths when making inferences about ancestral states or other comparative parameters. Here we present a general Bayesian approach for testing comparative hypotheses across statistically justified samples of phylogenies, focusing on the specific issue of reconstructing ancestral states. The method uses Markov chain Monte Carlo techniques for sampling phylogenetic trees and for investigating the parameters of a statistical model of trait evolution. We describe how to combine information about the uncertainty of the phylogeny with uncertainty in the estimate of the ancestral state. Our approach does not constrain the sample of trees only to those that contain the ancestral node or nodes of interest, and we show how to reconstruct ancestral states of uncertain nodes using a most-recent-common-ancestor approach. We illustrate the methods with data on ribonuclease evolution in the Artiodactyla. Software implementing the methods ( BayesMultiState) is available from the authors.
Resumo:
In order to harness the computational capacity of dissociated cultured neuronal networks, it is necessary to understand neuronal dynamics and connectivity on a mesoscopic scale. To this end, this paper uncovers dynamic spatiotemporal patterns emerging from electrically stimulated neuronal cultures using hidden Markov models (HMMs) to characterize multi-channel spike trains as a progression of patterns of underlying states of neuronal activity. However, experimentation aimed at optimal choice of parameters for such models is essential and results are reported in detail. Results derived from ensemble neuronal data revealed highly repeatable patterns of state transitions in the order of milliseconds in response to probing stimuli.
Resumo:
Existing methods of dive analysis, developed for fully aquatic animals, tend to focus on frequency of behaviors rather than transitions between them. They, therefore, do not account for the variability of behavior of semiaquatic animals, and the switching between terrestrial and aquatic environments. This is the first study to use hidden Markov models (HMM) to divide dives of a semiaquatic animal into clusters and thus identify the environmental predictors of transition between behavioral modes. We used 18 existing data sets of the dives of 14 American mink (Neovison vison) fitted with time-depth recorders in lowland England. Using HMM, we identified 3 behavioral states (1, temporal cluster of dives; 2, more loosely aggregated diving within aquatic activity; and 3, terminal dive of a cluster or a single, isolated dive). Based on the higher than expected proportion of dives in State 1, we conclude that mink tend to dive in clusters. We found no relationship between temperature and the proportion of dives in each state or between temperature and the rate of transition between states, meaning that in our study area, mink are apparently not adopting different diving strategies at different temperatures. Transition analysis between states has shown that there is no correlation between ambient temperature and the likelihood of mink switching from one state to another, that is, changing foraging modes. The variables provided good discrimination and grouped into consistent states well, indicating promise for further application of HMM and other state transition analyses in studies of semiaquatic animals.
Resumo:
We discuss the estimation of the expected value of the quality-adjusted survival, based on multistate models. We generalize an earlier work, considering the sojourn times in health states are not identically distributed, for a given vector of covariates. Approaches based on semiparametric and parametric (exponential and Weibull distributions) methodologies are considered. A simulation study is conducted to evaluate the performance of the proposed estimator and the jackknife resampling method is used to estimate the variance of such estimator. An application to a real data set is also included.
Resumo:
Before signing electronic contracts, a rational agent should estimate the expected utilities of these contracts and calculate the violation risks related to them. In order to perform such pre-signing procedures, this agent has to be capable of computing a policy taking into account the norms and sanctions in the contracts. In relation to this, the contribution of this work is threefold. First, we present the Normative Markov Decision Process, an extension of the Markov Decision Process for explicitly representing norms. In order to illustrate the usage of our framework, we model an example in a simulated aerospace aftermarket. Second, we specify an algorithm for identifying the states of the process which characterize the violation of norms. Finally, we show how to compute policies with our framework and how to calculate the risk of violating the norms in the contracts by adopting a particular policy.
Resumo:
This paper investigates economic growth’s pattern of variation across and within countries using a Time-Varying Transition Matrix Markov-Switching Approach. The model developed follows the approach of Pritchett (2003) and explains the dynamics of growth based on a collection of different states, each of which has a sub-model and a growth pattern, by which countries oscillate over time. The transition matrix among the different states varies over time, depending on the conditioning variables of each country, with a linear dynamic for each state. We develop a generalization of the Diebold’s EM Algorithm and estimate an example model in a panel with a transition matrix conditioned on the quality of the institutions and the level of investment. We found three states of growth: stable growth, miraculous growth, and stagnation. The results show that the quality of the institutions is an important determinant of long-term growth, whereas the level of investment has varying roles in that it contributes positively in countries with high-quality institutions but is of little relevance in countries with medium- or poor-quality institutions.
Resumo:
Over the last decades, the analysis of the transmissions of international nancial events has become the subject of many academic studies focused on multivariate volatility models volatility. The goal of this study is to evaluate the nancial contagion between stock market returns. The econometric approach employed was originally presented by Pelletier (2006), named Regime Switching Dynamic Correlation (RSDC). This methodology involves the combination of Constant Conditional Correlation Model (CCC) proposed by Bollerslev (1990) with Markov Regime Switching Model suggested by Hamilton and Susmel (1994). A modi cation was made in the original RSDC model, the introduction of the GJR-GARCH model formulated in Glosten, Jagannathan e Runkle (1993), on the equation of the conditional univariate variances to allow asymmetric e ects in volatility be captured. The database was built with the series of daily closing stock market indices in the United States (SP500), United Kingdom (FTSE100), Brazil (IBOVESPA) and South Korea (KOSPI) for the period from 02/01/2003 to 09/20/2012. Throughout the work the methodology was compared with others most widespread in the literature, and the model RSDC with two regimes was de ned as the most appropriate for the selected sample. The set of results provide evidence for the existence of nancial contagion between markets of the four countries considering the de nition of nancial contagion from the World Bank called very restrictive. Such a conclusion should be evaluated carefully considering the wide diversity of de nitions of contagion in the literature.
Resumo:
This work empirically evaluates the Taylor rule for the US and Brazil using Markov-Switching Regimes. I find that the inflation parameter of the US Taylor rule is less than one in many periods, contrasting heavily with Clarida, Gal´ı and Gertler (2000), and the same happens with Brazilian data. When the inflation parameter is greater than one, it encompasses periods that these authors considered they should be less than one. Brazil is used for comparative purposes because it experienced a high level inflation until 1994 and then a major stabilization plan reduced the growth in prices to civilized levels. Thus, it is a natural laboratory to test theories designed to work in any environment. The findings point to a theoretical gap that deserves further investigation and show that monetary policy in Brazil has been ineffective, which is coherent with the general attitude of population in relation to this measure.
Resumo:
This work evaluates empirically the Taylor rule for the US and Brazil using Kalman Filter and Markov-Switching Regimes. We show that the parameters of the rule change significantly with variations in both output and output gap proxies, considering hidden variables and states. Such conclusions call naturally for robust optimal monetary rules. We also show that Brazil and US have very contrasting parameters, first because Brazil presents time-varying intercept, second because of the rigidity in the parameters of the Brazilian Taylor rule, regardless the output gap proxy, data frequency or sample data. Finally, we show that the long-run inflation parameter of the US Taylor rule is less than one in many periods, contrasting strongly with Orphanides (forthcoming) and Clarida, Gal´i and Gertler (2000), and the same happens with Brazilian monthly data.