895 resultados para Markov chains. Convergence. Evolutionary Strategy. Large Deviations


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study risk-sensitive control of continuous time Markov chains taking values in discrete state space. We study both finite and infinite horizon problems. In the finite horizon problem we characterize the value function via Hamilton Jacobi Bellman equation and obtain an optimal Markov control. We do the same for infinite horizon discounted cost case. In the infinite horizon average cost case we establish the existence of an optimal stationary control under certain Lyapunov condition. We also develop a policy iteration algorithm for finding an optimal control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We develop a general theory of Markov chains realizable as random walks on R-trivial monoids. It provides explicit and simple formulas for the eigenvalues of the transition matrix, for multiplicities of the eigenvalues via Mobius inversion along a lattice, a condition for diagonalizability of the transition matrix and some techniques for bounding the mixing time. In addition, we discuss several examples, such as Toom-Tsetlin models, an exchange walk for finite Coxeter groups, as well as examples previously studied by the authors, such as nonabelian sandpile models and the promotion Markov chain on posets. Many of these examples can be viewed as random walks on quotients of free tree monoids, a new class of monoids whose combinatorics we develop.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a server serving a time-slotted queued system of multiple packet-based flows, where not more than one flow can be serviced in a single time slot. The flows have exogenous packet arrivals and time-varying service rates. At each time, the server can observe instantaneous service rates for only a subset of flows ( selected from a fixed collection of observable subsets) before scheduling a flow in the subset for service. We are interested in queue length aware scheduling to keep the queues short. The limited availability of instantaneous service rate information requires the scheduler to make a careful choice of which subset of service rates to sample. We develop scheduling algorithms that use only partial service rate information from subsets of channels, and that minimize the likelihood of queue overflow in the system. Specifically, we present a new joint subset-sampling and scheduling algorithm called Max-Exp that uses only the current queue lengths to pick a subset of flows, and subsequently schedules a flow using the Exponential rule. When the collection of observable subsets is disjoint, we show that Max-Exp achieves the best exponential decay rate, among all scheduling algorithms that base their decision on the current ( or any finite past history of) system state, of the tail of the longest queue. To accomplish this, we employ novel analytical techniques for studying the performance of scheduling algorithms using partial state, which may be of independent interest. These include new sample-path large deviations results for processes obtained by non-random, predictable sampling of sequences of independent and identically distributed random variables. A consequence of these results is that scheduling with partial state information yields a rate function significantly different from scheduling with full channel information. In the special case when the observable subsets are singleton flows, i.e., when there is effectively no a priori channel state information, Max-Exp reduces to simply serving the flow with the longest queue; thus, our results show that to always serve the longest queue in the absence of any channel state information is large deviations optimal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

info:eu-repo/semantics/published

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The key problems in discussing stochastic monotonicity and duality for continuous time Markov chains are to give the criteria for existence and uniqueness and to construct the associated monotone processes in terms of their infinitesimal q -matrices. In their recent paper, Chen and Zhang [6] discussed these problems under the condition that the given q-matrix Q is conservative. The aim of this paper is to generalize their results to a more general case, i.e., the given q-matrix Q is not necessarily conservative. New problems arise 'in removing the conservative assumption. The existence and uniqueness criteria for this general case are given in this paper. Another important problem, the construction of all stochastically monotone Q-processes, is also considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We derive necessary and sufficient conditions for the existence of bounded or summable solutions to systems of linear equations associated with Markov chains. This substantially extends a famous result of G. E. H. Reuter, which provides a convenient means of checking various uniqueness criteria for birth-death processes. Our result allows chains with much more general transition structures to be accommodated. One application is to give a new proof of an important result of M. F. Chen concerning upwardly skip-free processes. We then use our generalization of Reuter's lemma to prove new results for downwardly skip-free chains, such as the Markov branching process and several of its many generalizations. This permits us to establish uniqueness criteria for several models, including the general birth, death, and catastrophe process, extended branching processes, and asymptotic birth-death processes, the latter being neither upwardly skip-free nor downwardly skip-free.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose an alternate parameterization of stationary regular finite-state Markov chains, and a decomposition of the parameter into time reversible and time irreversible parts. We demonstrate some useful properties of the decomposition, and propose an index for a certain type of time irreversibility. Two empirical examples illustrate the use of the proposed parameter, decomposition and index. One involves observed states; the other, latent states.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Department of Statistics, Cochin University of Science and Technology

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this paper is to investigate several analytical methods of solving first passage (FP) problem for the Rouse model, a simplest model of a polymer chain. We show that this problem has to be treated as a multi-dimensional Kramers' problem, which presents rich and unexpected behavior. We first perform direct and forward-flux sampling (FFS) simulations, and measure the mean first-passage time $\tau(z)$ for the free end to reach a certain distance $z$ away from the origin. The results show that the mean FP time is getting faster if the Rouse chain is represented by more beads. Two scaling regimes of $\tau(z)$ are observed, with transition between them varying as a function of chain length. We use these simulations results to test two theoretical approaches. One is a well known asymptotic theory valid in the limit of zero temperature. We show that this limit corresponds to fully extended chain when each chain segment is stretched, which is not particularly realistic. A new theory based on the well known Freidlin-Wentzell theory is proposed, where dynamics is projected onto the minimal action path. The new theory predicts both scaling regimes correctly, but fails to get the correct numerical prefactor in the first regime. Combining our theory with the FFS simulations lead us to a simple analytical expression valid for all extensions and chain lengths. One of the applications of polymer FP problem occurs in the context of branched polymer rheology. In this paper, we consider the arm-retraction mechanism in the tube model, which maps exactly on the model we have solved. The results are compared to the Milner-McLeish theory without constraint release, which is found to overestimate FP time by a factor of 10 or more.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Let IaS,a"e (d) be a set of centers chosen according to a Poisson point process in a"e (d) . Let psi be an allocation of a"e (d) to I in the sense of the Gale-Shapley marriage problem, with the additional feature that every center xi aI has an appetite given by a nonnegative random variable alpha. Generalizing some previous results, we study large deviations for the distance of a typical point xaa"e (d) to its center psi(x)aI, subject to some restrictions on the moments of alpha.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We prove large deviation results for sums of heavy-tailed random elements in rather general convex cones being semigroups equipped with a rescaling operation by positive real numbers. In difference to previous results for the cone of convex sets, our technique does not use the embedding of cones in linear spaces. Examples include the cone of convex sets with the Minkowski addition, positive half-line with maximum operation and the family of square integrable functions with arithmetic addition and argument rescaling.