946 resultados para Mark-recapture Analysis
Resumo:
Lizards and birds are both popular model organisms in behavioural ecology, but the interactions between them have attracted little study. Given the putative importance of birds as predators of diurnal Lizards, it is of considerable interest to know which traits (of lizards as well as birds) influence the outcome of a predatory attempt. We studied predation by giant terrestrial kingfishers (kookaburras, Dacelo novaeguineae: Alcedinidae) on heliothermic diurnal lizards (highland water skinks, Eulamprus tympanum: Scincidae), with particular reference to the role of prey (lizard) size. Our approach was twofold: to gather direct evidence (sizes of lizards consumed in the field, compared to those available) and indirect evidence rite-related shifts in lizard behaviour). We quantified the size structure of a natural population of skinks (determined by an extensive mark-recapture program), and compared it to the sizes of wild lizards taken by kookaburras (determined by analysis of prey remains left at the birds' nests,. Kookaburras showed size-based predation: they preyed mainly on small and medium-sized rather than large lizards in the field. However, the mechanism producing this bias remains elusive. It is not due to any distinctive behavioural attributes (locomotor ability, activity level, habitat usage) of the lizards of the size class disproportionately taken by the kookaburras. The greater vulnerability of subadult lizards may reflect subtle ontogenetic shifts in ecological and behavioural traits, but our data suggest that great caution is needed in inferring patterns of vulnerability to predation from indirect measures based on either the prey or the predator alone. Instead, we need direct observations on the interaction between the two.
Resumo:
We investigated the following aspects of the biology of a population of Cnemidophorus vacariensis Feltrim & Lema, 2000 during the four seasons: thermal biology, relationship with the thermal environment, daily and seasonal activity, population structure and growth rate. Cnemidophorus vacariensis is restricted to rocky outcrops of the "campos de cima da serra" grasslands on the Araucaria Plateau, southern Brazil, and is currently listed as regionally and nationally threatened with extinction. Data were collected from October 2004 through September 2007 in the state of Rio Grande do Sul. Sampling was conducted randomly from 08:00 a.m. to 6:00 p.m. The capture-mark-recapture method was employed. The lizards were captured by hand, and their cloacal temperature, sex, snout-ventral length (SVL), mass, and the temperature of their microhabitat (substrate temperature and air temperature) were recorded. Individuals were then marked by toe-clipping and released at the site of capture. Body temperatures were obtained for 175 individuals, activity data for 96 individuals, and data on population structure and growth for 59 individuals. All data were obtained monthly, at different times of the day. Cnemidophorus vacariensis average body temperature was 23.84ºC, ranging between 9.6 and 38.2ºC. Temperatures ranged between 21 and 29ºC. The correlation between external heat sources, substrate and air were positive and significant and there was a greater correlation between lizard's temperature and the temperature of the substrate (tigmothermic species). The relatively low body temperatures of individuals are associated with the climate of their environment (altitude up to 1,400 m), with large variations in temperature throughout the day and the year, and low temperatures in winter. The average body temperature observed for C. vacariensis was low when compared with that of phylogenetically related species, suggesting that the thermal biology of this species reflects adaptations to the temperate region where it lives. The monthly rates of activity of lizards were related to monthly variations in the ambient temperatures. Our data suggest that the daily and seasonal activity of C. vacariensis result from the interaction between two factors: changes in the environment temperature and the relationship between individuals and their thermal environment. The population structure of C. vacariensis varied throughout the study period, with maximum biomass in January and maximum density in February (recruitment period). The sex ratio diverged from the expected 1:1. The growth analysis showed a negative relationship between the growth rate of individuals and the SVL, revealing that young individuals grow faster than adults, a typical pattern for short-lived species. The population studied showed a seasonal and cyclical variation associated with the reproductive cycle. The life strategy of C. vacariensis seems to include adaptations to the seasonal variations in temperature, typical of its environment.
Resumo:
SUMMARYIn the context of the biodiversity crisis, amphibians are experiencing the most severe worldwide decline of all vertebrates and are in urgent need of better management. Efficient conservation strategies rely on sound knowledge of the species biology and of the genetic and demographic processes that might impair their welfare. Nonetheless, these processes are poorly understood in amphibians. Delineating population boundaries remains consequently problematic for these species, while it is of critical importance to define adequate management units for conservation. In this study, our attention focused on the alpine salamander (Salamandra atra), a species that deserves much interest in terms of both conservation biology and evolution. This endemic alpine species shows peculiar life-history traits (viviparity, reduced activity period, slow maturation) and has a slow population turnover, which might be problematic for its persistence in a changing environment. Due to its elusive behaviour (individuals spend most of their time underground and are unavailable for sampling), dynamic processes of gene and individuals were poorly understood for that species. Consequently, its conservation status could hardly be reliably assessed. Similarly the fire salamander (Salamandra salamandra) also poses special challenges for conservation, as no clear demarcation of geographical populations exists and dispersal patterns are poorly known. Through a phylogeographic analysis, we first studied the evolutionary history of the alpine salamander to better document the distribution of the genetic diversity along its geographical range. This study highlighted the presence of multiple divergent lineages in Italy together with a clear genetic divergence between populations from Northern and Dinaric Alps. These signs of cryptic genetic differentiation, which are not accounted for by the current taxonomy of the species, should not be neglected for further definition of conservation units. In addition, our data supported glacial survival of the species in northern peripheral glacial réfugia and nunataks, a pattern rarely documented for long-lived species. Then, we evaluated the level of gene flow between populations at the local scale and tested for asymmetries in male versus female dispersal using both field-based (mark-recapture) and genetic approaches. This study revealed high level of gene flow between populations, which stems mainly from male dispersal. This corroborated the idea that salamanders are much better dispersers than hitherto thought and provided a well- supported example of male-biased dispersal in amphibians. In a third step, based on a mark- recapture survey, we addressed the problem of sampling unavailability in alpine salamanders and evaluated its impact on two monitoring methods. We showed that about three quarters of individuals were unavailable for sampling during sampling sessions, a proportion that can vary with climatic conditions. If not taken into account, these complexities would result in false assumptions on population trends and misdirect conservation efforts. Finally, regarding the daunting task of delineating management units, our attention was drawn on the fire salamander. We conducted a local population genetic study that revealed high levels of gene flow among sampling sites. Management units for this species should consequently be large. Interestingly, despite the presence of several landscape features often reported to act as barriers, genetic breaks occurred at unexpected places. This suggests that landscape features may rather have idiosyncratic effects on population structure. In conclusion, this work brought new insights on both genetic and demographic processes occurring in salamanders. The results suggest that some biological paradigms should be taken with caution when particular species are in focus. Species- specific studies remain thus fundamental for a better understanding of species evolution and conservation, particularly in the context of current global changes.RESUMEDans le contexte de la crise de la biodiversité actuelle, les amphibiens subissent le déclin le plus important de tous les vertébrés et ont urgemment besoin d'une meilleure protection. L'établissement de stratégies de conservation efficaces repose sur des connaissances solides de la biologie des espèces et des processus génétiques et démographiques pouvant menacer leur survie. Ces processus sont néanmoins encore peu étudiés chez les amphibiens.Dans cette étude, notre attention s'est portée sur la salamandre noire (Salamandra atra), une espèce endémique des Alpes dont les traits d'histoire de vie atypiques (viviparité, phase d'activité réduite, lent turnover des populations) pourraient la rendre très vulnérable face aux changements environnementaux. Par ailleurs, en raison de son comportement cryptique (les individus passent la plupart de leur temps sous terre) la dynamique des gènes et des individus est mal comprise chez cette espèce. Il est donc difficile d'évaluer son statut de conservation de manière fiable. La salamandre tachetée {Salamandra salamandra), pour qui il n'existe aucune démarcation géographique apparente des populations, pose également des problèmes en termes de gestion. Dans un premier temps, nous avons étudié l'histoire évolutive de la salamandre noire afin de mieux décrire la distribution de sa diversité génétique au sein de son aire géographique. Cela a permis de mettre en évidence la présence de multiples lignées en Italie, ainsi qu'une nette divergence entre les populations du nord des Alpes et des Alpes dinariques. Ces résultats seront à prendre en compte lorsqu'il s'agira de définir des unités de conservation pour cette espèce. D'autre part, nos données soutiennent l'hypothèse d'une survie glaciaire dans des refuges nordiques périglaciaires ou dans des nunataks, fait rarement documenté pour une espèce longévive. Nous avons ensuite évalué la différentiation génétique des populations à l'échelle locale, ce qui a révélé d'important flux de gènes, ainsi qu'une asymétrie de dispersion en faveur des mâles. Ces résultats corroborent l'idée que les amphibiens dispersent mieux que ce que l'on pensait, et fournissent un exemple robuste de dispersion biaisée en faveur des mâles chez les amphibiens. Nous avons ensuite abordé le problème de Γ inaccessibilité des individus à la capture. Nous avons montré qu'environ trois quarts des individus sont inaccessibles lors des échantillonnages, une proportion qui peut varier en fonction des conditions climatiques. Ignoré, ce processus pourrait entraîner une mauvaise interprétation des fluctuations de populations ainsi qu'une mauvaise allocation des efforts de conservation. Concernant la définition d'unités de gestion pour la salamandre tachetée, nous avons pu mettre en évidence un flux de gènes important entre les sites échantillonnés. Les unités de gestion pour cette espèce devraient donc être étendues. Etonnamment, malgré la présence de nombreuses barrières potentielles au flux de gènes, les démarcations génétiques sont apparues à des endroits inattendus. En conclusion, ce travail a apporté une meilleure compréhension des processus génétiques et démographiques en action chez les salamandres. Les résultats suggèrent que certains paradigmes biologiques devraient être considérés avec précaution quand il s'agit de les appliquer à des espèces particulières. Les études spécifiques demeurent donc fondamentales pour une meilleure compréhension de l'évolution des espèces et leur conservation, tout particulièrement dans le contexte des changements globaux actuels.
Resumo:
Behavioral ecology of Heteragrion consors Hagen (Odonata: Megapodagrionidae): a shade-seek Atlantic forest damselfly. The intensity of the inter and intra-sexual selection can affect male behavioral traits as territorial fidelity and aggressiveness allowing the existence of different strategies. However, its differential success could be affected by environmental - as the diel variation in temperature - and physiological constrains - as the variation in thermoregulatory abilities. In this context, we present a behavioral analysis of Heteragrion consors (Zygoptera, Megapodagrionidae) trying to characterize its mating system, diel activity pattern, temporal budget, territoriality and reproductive biology. These data were obtained based on field observations using the focal individual method and mark-recapture techniques in 120 m of a shaded Atlantic Forest stream in Brazil. The males of this species were territorial, varying in its local fidelity, while the females appear sporadically. Males were perched in the majority of the time, but were also observed in cleaning movements, longitudinal abdominal flexion, wing flexion and sperm transfer during perch. The males presented a perched thermoregulatory behavior related to an exothermic regulation. Foraging and agonistic interactions were rare, but dominate the other behavioral activities. Abdominal movements associated to long lasting copula pointed to the existence of sperm competition in this species. Males performed contact post-copulatory guarding of the females. These observations pointed to a non-resource mating system for this species.
Resumo:
L'Estany de Banyoles, sistema peculiar tant des del punt de vista de la seva formació geològica com de les seves característiques limnològiques, conté actualment una comunitat de peixos profundament modificada respecte de la comunitat original. La perca americana (Micropterus salmoides), introduïda a finals dels anys seixanta del segle XX, és avui una de les espècies dominants en aquesta comunitat, i ocupa sobretot l'hàbitat litoral de l'Estany. Es tracta d'una espècie molt ben estudiada a Nord Amèrica des de diverses disciplines de la biologia i des de fa diverses dècades, cosa que ha comportat que actualment es disposi d'un gran volum d'informació sobre ella. Amb tot, fora del seu continent d'origen ha rebut poca atenció, malgrat l'amplia expansió que ha experimentat arreu del món. En aquesta tesi doctoral s'han abordat, amb un enfocament descriptiu, aspectes fins ara desconeguts per a l'espècie a l'Estany de Banyoles, a la península ibèrica i fins i tot a Europa. Concretament, se n'ha analitzat la condició, el creixement i la demografia, així com les seves variacions temporals. Amb aquesta finalitat, s'ha dissenyat un mostreig composat de deu campanyes de pesca intensives més alguns petits mostrejos addicionals intercalats, mostreig que s'ha allargat des del juliol del 1997 i fins el novembre del 1999. La captura dels exemplars s'ha realitzat mitjançant una tècnica de pesca elèctrica amb una embarcació posada a punt expressament per a aquest estudi, la qual s'ha mostrat considerablement eficient malgrat les dificultats que ofereix el medi. S'ha realitzat un mostreig de marcatge-recaptura basat en la mutilació d'aletes i, en alguns casos, en el marcatge amb pintura acrílica. Només en la darrera campanya (novembre del 1999) s'ha sacrificat una part important de les captures a fi de retirar-ne els otòlits per a la determinació de l'edat. Pel que fa a l'anàlisi de les dades, s'ha aplicat un ampli ventall de mètodes i models per a cada un dels aspectes estudiats, a fi de contrastar-ne els resultats i validar-ne la seva fiabilitat. En el cas de la condició, s'han aplicat mètodes d'anàlisi de la covariància (ANCOVA) i altres mètodes anàlegs, així com, paral·lelament, regressions i anàlisis derivades a partir de la relació longitud-pes. En l'estudi del creixement, s'han realitzat ajustaments de diversos models mitjançant regressions sobre dades de mida a l'edat i sobre dades d'increments de mida observats per interval de temps. També s'han aplicat anàlisis de freqüències de longitud, i, finalment, s'han aplicat mètodes de retrocàlcul a partir dels increments anuals del radi observats en els otòlits. Finalment, en el cas de l'estudi de la demografia, s'han aplicat models de marcatge-recaptura per a l'estimació de la grandària poblacional i de la supervivència, i, a més, s'han ajustat diversos models continus de supervivència sobre aquestes estimacions prèvies. També s'han estimat les capturabilitats associades a la nova tècnica de captura. Per una altra banda, s'ha implementat i realitzat un mostreig sobre la població de pescadors esportius de l'Estany encarat a determinar, bàsicament, la pressió de pesca a què es veu sotmesa l'espècie. Els resultats mostren sobretot una alta estabilitat interanual en tots els aspectes estudiats, que s'explica per l'estabilitat ambiental que, al seu torn, és característica d'aquest ecosistema lacustre. Això reverteix en una longevitat màxima observada que iguala la màxima descrita a la literatura per a l'espècie. Alhora, també s'han descrit fortes oscil·lacions estacionals tant en la condició, com en el creixement, com també en la supervivència, les quals, però, presenten certes diferències en la seva temporalitat, cosa que indica una certa diferenciació en els factors que les regulen.
Resumo:
This study aimed to provide an insight on the ecology of the bottlenose dolphin population in Madeira archipelago. To achieve this, population structure; group dynamics, site-fidelity, residency and movement patterns within and out of the study area; survival and abundance estimates and spatial and temporal distribution and habitat preferences related to physiographic parameters using data collected between 2001-2011, were investigated. Photo-identification data analysis revealed strong evidences that bottlenose dolphins seen in the archipelago of Madeira belong to an open population with regular recruitment of new animals to the area. This population exhibited a typical fission-fusion society, in which short-term acquaintances prevail, with only a few long-lasting associations. Photo-identification methods demonstrated that there is a large variability in residency pattern, with resident, transient and migrant individuals. Only a small number of dolphins were found to be resident (4.3%). Social network diagram as well as SLAR analysis supported the existence of a mixed population of residents, migrants and transients. Mark-recapture methods estimated a high survival rate, within the range of other long-lived cetacean species. The resident community is composed of app. 180 individuals. In addition, around 400 dolphins of different residency patterns were found to use the south area of Madeira Island. Spatial distribution indicated that bottlenose dolphins were regularly found in shallow and closer to shore areas, suggesting the existence of biological processes influenced by bathymetry. Moreover, temporal patterns revealed no strong seasonal fluctuation in the presence of bottlenose dolphins in Madeira archipelago waters. Bottlenose dolphins are listed under the Annex II of the EU habitats Directive that requires the designation of Special Areas of Conservation (SACs) for this species; as such, the knowledge gained through this work can be used by governmental authorities to the establishment and management of areas for the conservation of bottlenose dolphin in Madeira archipelago.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The chytrid fungus Batrachochytrium dendrobatidis has been implicated in the decline and extinction of numerous frog species worldwide. In Queensland, Australia, it has been proposed as the cause of the decline or apparent extinction of at least 14 high-elevation rainforest frog species. One of these, Taudactylus eungellensis, disappeared from rainforest streams in Eungella National Park in 1985-1986, but a few remnant populations were subsequently discovered. Here, we report the analysis of B. dendrobatidis infections in toe tips of T. eungellensis and sympatric species collected in a mark-recapture study between 1994 and 1998. This longitudinal study of the fungus in individually marked frogs sheds new light on the effect of this threatening infectious process in field, as distinct from laboratory, conditions. We found a seasonal peak of infection in the cooler months, with no evidence of interannual variation. The overall prevalence of infection was 18% in T. eungellensis and 28% in Litoria wilcoxii/jungguy, a sympatric frog that appeared not to decline in 1985-1986. No infection was found in any of the other sympatric species. Most importantly, we found no consistent evidence of lower survival in T. eungellensis that were infected at the time of first capture, compared with uninfected individuals. These results refute the hypothesis that remnant populations of T. eungellensis recovered after a B. dendrobatidis epidemic because the pathogen had disappeared. They show that populations of T. eungellensis now persist with stable, endemic infections of B. dendrobatidis.
Resumo:
We conducted a demographic and genetic study to investigate the effects of fragmentation due to the establishment of an exotic softwood plantation on populations of a small marsupial carnivore, the agile antechinus (Antechinus agilis), and the factors influencing the persistence of those populations in the fragmented habitat. The first aspect of the study was a descriptive analysis of patch occupancy and population size, in which we found a patch occupancy rate of 70% among 23 sites in the fragmented habitat compared to 100% among 48 sites with the same habitat characteristics in unfragmented habitat. Mark-recapture analyses yielded most-likely population size estimates of between 3 and 85 among the 16 occupied patches in the fragmented habitat. Hierarchical partitioning and model selection were used to identify geographic and habitat-related characteristics that influence patch occupancy and population size. Patch occupancy was primarily influenced by geographic isolation and habitat quality (vegetation basal area). The variance in population size among occupied sites was influenced primarily by forest type (dominant Eucalyptus species) and, to a lesser extent, by patch area and topographic context (gully sites had larger populations). A comparison of the sex ratios between the samples from the two habitat contexts revealed a significant deficiency of males in the fragmented habitat. We hypothesise that this is due to male-biased dispersal in an environment with increased dispersal-associated mortality. The population size and sex ratio data were incorporated into a simulation study to estimate the proportion of genetic diversity that would have been lost over the known timescale since fragmentation if the patch populations had been totally isolated. The observed difference in genetic diversity (gene diversity and allelic richness at microsatellite and mitochondrial markers) between 16 fragmented and 12 unfragmented sites was extremely low and inconsistent with the isolation of the patch populations. Our results show that although the remnant habitat patches comprise approximately 2% of the study area, they can support non-isolated populations. However, the distribution of agile antechinus populations in the fragmented system is dependent on habitat quality and patch connectivity. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Many long-lived marine species exhibit life history traits. that make them more vulnerable to overexploitation. Accurate population trend analysis is essential for development and assessment of management plans for these species. However, because many of these species disperse over large geographic areas, have life stages inaccessible to human surveyors, and/or undergo complex developmental migrations, data on trends in abundance are often available for only one stage of the population, usually breeding adults. The green turtle (Chelonia mydas) is one of these long-lived species for which population trends are based almost exclusively on either numbers of females that emerge to nest or numbers of nests deposited each year on geographically restricted beaches. In this study, we generated estimates of annual abundance for juvenile green turtles at two foraging grounds in the Bahamas based on long-term capture-mark-recapture (CMR) studies at Union Creek (24 years) and Conception Creek (13 years), using a two-stage approach. First, we estimated recapture probabilities from CMR data using the Cormack-Jolly-Seber models in the software program MARK; second, we estimated annual abundance of green turtles. at both study sites using the recapture probabilities in a Horvitz-Thompson type estimation procedure. Green turtle abundance did not change significantly in Conception Creek, but, in Union Creek, green turtle abundance had successive phases of significant increase, significant decrease, and stability. These changes in abundance resulted from changes in immigration, not survival or emigration. The trends in abundance on the foraging grounds did not conform to the significantly increasing trend for the major nesting population at Tortuguero, Costa Rica. This disparity highlights the challenges of assessing population-wide trends of green turtles and other long-lived species. The best approach for monitoring population trends may be a combination of (1) extensive surveys to provide data for large-scale trends in relative population abundance, and (2) intensive surveys, using CMR techniques, to estimate absolute abundance and evaluate the demographic processes' driving the trends.
Resumo:
Ecological and genetic studies of marine turtles generally support the hypothesis of natal homing, but leave open the question of the geographical scale of genetic exchange and the capacity of turtles to shift breeding sites. Here we combine analyses of mitochondrial DNA (mtDNA) variation and recapture data to assess the geographical scale of individual breeding populations and the distribution of such populations through Australasia. We conducted multiscale assessments of mtDNA variation among 714 samples from 27 green turtle rookeries and of adult female dispersal among nesting sites in eastern Australia. Many of these rookeries are on shelves that were flooded by rising sea levels less than 10 000 years (c. 450 generations) ago. Analyses of sequence variation among the mtDNA control region revealed 25 haplotypes, and their frequency distributions indicated 17 genetically distinct breeding stocks (Management Units) consisting either of individual rookeries or groups of rookeries in general that are separated by more than 500 km. The population structure inferred from mtDNA was consistent with the scale of movements observed in long-term mark-recapture studies of east Australian rookeries. Phylogenetic analysis of the haplotypes revealed five clades with significant partitioning of sequence diversity (Phi = 68.4) between Pacific Ocean and Southeast Asian/Indian Ocean rookeries. Isolation by distance was indicated for rookeries separated by up to 2000 km but explained only 12% of the genetic structure. The emerging general picture is one of dynamic population structure influenced by the capacity of females to relocate among proximal breeding sites, although this may be conditional on large population sizes as existed historically across this region.
Resumo:
Atomic force microscopy has been used to study the surface properties of model spray dried powders. Phase imaging, nanoindentation and force modulation microscopy have differentiated between the different surface material properties of the particles, revealing a regular dispersion of soft, oil rich areas distributed across the particles' surface. Humidity and temperature cycling effects on the caking behavior of the particles have also been investigated, with significant morphology changes and onset of caking found to occur within relatively short periods of time.
Resumo:
Despite a commitment by the European Union to protect its migratory bat populations, conservation efforts are hindered by a poor understanding of bat migratory strategies and connectivity between breeding and wintering grounds. Traditional methods like mark-recapture are ineffective to study broad-scale bat migratory patterns. Stable hydrogen isotopes (delta D) have been proven useful in establishing spatial migratory connectivity of animal populations. Before applying this tool, the method was calibrated using bat samples of known origin. Here we established the potential of delta D as a robust geographical tracer of breeding origins of European bats by measuring delta D in hair of five sedentary bat species from 45 locations throughout Europe. The delta D of bat hair strongly correlated with well-established spatial isotopic patterns in mean annual precipitation in Europe, and therefore was highly correlated with latitude. We calculated a linear mixed-effects model, with species as random effect, linking delta D of bat hair to precipitation delta D of the areas of hair growth. This model can be used to predict breeding origins of European migrating bats. We used delta C-13 and delta N-15 to discriminate among potential origins of bats, and found that these isotopes can be used as variables to further refine origin predictions. A triple-isotope approach could thereby pinpoint populations or subpopulations that have distinct origins. Our results further corroborated stable isotope analysis as a powerful method to delineate animal migrations in Europe.