973 resultados para Marine Reserve
Resumo:
Marine ecosystems and their associated populations are increasingly at risk from the cumulative impacts of many anthropogenic threats that increase the likelihood of species extinction and altered community dynamics. In response, marine reserves can be used to protect exploited species and conserve biodiversity. The increased abundance of predatory species in marine reserves may cause indirect effects along chains of multi-trophic interactions. These trophic cascades can arise through direct predation, density-mediated indirect interactions (DMIIs), or indirect behavioural effects, termed trait-mediated indirect interactions (TMIIs). The extent of algal cover and the abundance of 4 primary consumers were determined in Lough Hyne, which was designated Europe's first marine nature reserve in 1981. The primary consumers were the sea urchin Paracentrotus lividus, the topshell Gibbula cineraria, the oyster Anomia ephippium, and the scallop Chlamys varia. The abundances of 3 starfish species (Marthasterias glacialis, Asterias rubens, and Asterina gibbosa) were also determined, as were 2 potential crustacean predators, Necora puber and Carcinus maenas. These data were compared with historical data from a 1962 (prey) and a 1963 (predator) survey to determine the nature of community interactions over adjacent trophic levels. The present study reveals a breakdown in population structure of the 4 surveyed prey species. Marine reserve designation has led to an increase in predatory crabs and M. glacialis, a subsequent decrease in primary consumers, especially the herbivore P. lividus, and an increase in macroalgal cover which is indicative of a trophic cascade. The study shows that establishing a Marine Reserve does not guarantee that conservation benefits will be distributed equally.
Resumo:
The impact of sex-biased fishing and marine reserve protection on the mud crab Scylla serrata was examined by comparing the catch rates (catch-per-unit-effort, CPUE), mean size, sex ratios and movement of crabs in 2 coastal marine reserves (1.9 and 5.7 km(2)) and 4 fished non-reserve sites in subtropical Australia. Five years after closure, both marine reserves supported higher catch rates and a larger mean size of S. serrata than non-reserve sites. Males dominated catches of S. serrata in both marine reserves, where CPUE was at least twice as high within the reserves compared to non-reserve sites. Male crabs were also 10% larger in the reserves compared to adjacent fished areas, and of the total male catch, over 70% were equal to or greater than legal size compared to less than 50% outside the reserves. The sex ratio of S. serrata was skewed towards females in all nonreserve sites, which was most likely a result of the ban on taking female S. serrata in Moreton Bay. As only male crabs of >= 15 cm CW made up the S. serrata fishery in Moreton Bay, sex ratios of mature male and female crabs were examined, revealing a strong skew (2:1) towards mature males in both marine reserves. Of the 472 S. serrata captured in this study, 338 were tagged in the reserves in order to document movement of the crabs between the reserve and non-reserve sites. Of the 37 recaptured crabs, 73% were recorded inside the reserves, with some spillover (i.e. cross-boundary movement) of crabs recorded in fished areas. This study demonstrates the effectiveness of small (< 6 km(2)) marine reserves for sex-biased exploited fisheries species.
Resumo:
With marine biodiversity conservation the primary goal for reserve planning initiatives, a site's conservation potential is typically evaluated on the basis of the biological and physical features it contains. By comparison, socio-economic information is seldom a formal consideration of the reserve system design problem and generally limited to an assessment of threats, vulnerability or compatibility with surrounding uses. This is perhaps surprising given broad recognition that the success of reserve establishment is highly dependent on widespread stakeholder and community support. Using information on the spatial distribution and intensity of commercial rock lobster catch in South Australia, we demonstrate the capacity of mathematical reserve selection procedures to integrate socio-economic and biophysical information for marine reserve system design. Analyses of trade-offs highlight the opportunities to design representative, efficient and practical marine reserve systems that minimise potential loss to commercial users. We found that the objective of minimising the areal extent of the reserve system was barely compromised by incorporating economic design constraints. With a small increase in area (< 3%) and boundary length (< 10%), the economic impact of marine reserves on the commercial rock lobster fishery was reduced by more than a third. We considered also how a reserve planner might prioritise conservation areas using information on a planning units selection frequency. We found that selection frequencies alone were not a reliable guide for the selection of marine reserve systems, but could be used with approaches such as summed irreplaceability to direct conservation effort for efficient marine reserve design.
Resumo:
Ecosystems and the species and communities within them are highly complex systems that defy predictions with any degree of certainty. Managing and conserving these systems in the face of uncertainty remains a daunting challenge, particularly with respect to developing networks of marine reserves. Here we review several modelling frameworks that explicitly acknowledge and incorporate uncertainty, and then use these methods to evaluate reserve spacing rules given increasing levels of uncertainty about larval dispersal distances. Our approach finds similar spacing rules as have been proposed elsewhere - roughly 20-200 km - but highlights several advantages provided by uncertainty modelling over more traditional approaches to developing these estimates. In particular, we argue that uncertainty modelling can allow for (1) an evaluation of the risk associated with any decision based on the assumed uncertainty; (2) a method for quantifying the costs and benefits of reducing uncertainty; and (3) a useful tool for communicating to stakeholders the challenges in managing highly uncertain systems. We also argue that incorporating rather than avoiding uncertainty will increase the chances of successfully achieving conservation and management goals.
Resumo:
Socioeconomic considerations should have an important place in reserve design, Systematic reserve-selection tools allow simultaneous optimization for ecological objectives while minimizing costs but are seldom used to incorporate socioeconomic costs in the reserve-design process. The sensitivity of this process to biodiversity data resolution has been studied widely but the issue of socioeconomic data resolution has not previously been considered. We therefore designed marine reserves for biodiversity conservation with the constraint of minimizing commercial fishing revenue losses and investigated how economic data resolution affected the results. Incorporating coarse-resolution economic data from official statistics generated reserves that were only marginally less costly to the fishery than those designed with no attempt to minimize economic impacts. An intensive survey yielded fine-resolution data that, when incorporated in the design process, substantially reduced predicted fishery losses. Such an approach could help minimize fisher displacement because the least profitable grounds are selected for the reserve. Other work has shown that low-resolution biodiversity data can lead to underestimation of the conservation value of some sites, and a risk of overlooking the most valuable areas, and we have similarly shown that low-resolution economic data can cause underestimation of the profitability of some sites and a risk of inadvertently including these in the reserve. Detailed socioeconomic data are therefore an essential input for the design of cost-effective reserve networks.
Resumo:
Ocean acidification is receiving increasing attention because of its potential to affect marine ecosystems. Rare CO2 vents offer a unique opportunity to investigate the response of benthic ecosystems to acidification. However, the benthic habitats investigated so far are mainly found at very shallow water (less than or equal to 5 m depth) and therefore are not representative of the broad range of continental shelf habitats. Here, we show that a decrease from pH 8.1 to 7.9 observed in a CO2 vent system at 40 m depth leads to a dramatic shift in highly diverse and structurally complex habitats. Forests of the kelp Laminaria rodriguezii usually found at larger depths (greater than 65 m) replace the otherwise dominant habitats (i.e. coralligenous outcrops and rhodolith beds), which are mainly characterized by calcifying organisms. Only the aragonite-calcifying algae are able to survive in acidified waters, while high-magnesium-calcite organisms are almost completely absent. Although a long-term survey of the venting area would be necessary to fully understand the effects of the variability of pH and other carbonate parameters over the structure and functioning of the investigated mesophotic habitats, our results suggest that in addition of significant changes at species level, moderate ocean acidification may entail major shifts in the distribution and dominance of key benthic ecosystems at regional scale, which could have broad ecological and socio-economic implications.
Resumo:
The Tortugas South Ecological Reserve, located along the margin of the southwest Florida carbonate platform, is part of the largest no-take marine reserve in the U.S. Established in July 2001, the reserve is approximately 206 km2 in area, and ranges in depths from 30 m at Riley’s Hump to over 600 m at the southern edge of the reserve. Geological and biological information for the Tortugas South Reserve is lacking, and critical for management of the area. Bathymetric surveys were conducted with a Simrad EM 3000 multibeam echosounder at Riley’s Hump and Miller’s Ledge, located in the northern and central part of the reserve. Resulting data were used to produce basemaps to obtain geological ground truth and visual surveys of biological communities, including reef fishes. Visual surveys were conducted using SCUBA and the Phantom S2 Remotely Operated Vehicle (ROV) at Riley’s Hump. Visual surveys were conducted using the ROV and the Deepworker 2000 research submersible along Miller’s Ledge, within and outside of the reserve. A total of 108 fishes were recorded during SCUBA, ROV, and submersible observations. Replicate survey transects resulted in over 50 fishes documented at Miller’s Ledge, and eight of the top ten most abundant species were planktivores. Many species of groupers, including scamp (Mycteroperca phenax), red grouper (Epinephelus morio), snowy grouper (E. niveatus), speckled hind (E. drummondhayi), and Warsaw grouper (E. nigritus), are present in the sanctuary. Numerous aggregations of scamp and a bicolor phase of the Warsaw grouper were observed, indicating the importance of Miller’s Ledge as a potential spawning location for both commercially important and rare deep reef species, and as a potential source of larval recruits for the Florida Keys and other deep reef ecosystems of Florida
Resumo:
Marine reserves are increasingly being established as a mechanism to protect marine biodiversity and sensitive habitats. As well as providing conservation benefits, marine reserves provide benefits to recreational scuba divers who dive within the reserve, as well as to recreational and commercial fishers outside the reserve through spill-over effects. To ensure benefits are being realised, management of marine reserves requires ongoing monitoring and surveillance. These are not costless, and many marine reserve managers impose an entry fee. In some countries, dive tourism is major income source to coastal industries, and a concern is that high entry fees may dissuade divers. In this paper, the price elasticity of demand for dive tourism in three countries in South East Asia – Indonesia, Thailand and Malaysia – is estimated using a travel-cost model. From the model, the total non-market use value associated with diving in the area is estimated to be in the order of US$4.5 billion a year. The price elasticity of demand in the region is highly inelastic, such that increasing the cost of diving through a management levy would have little impact on total diver numbers.
Resumo:
Research cruises were conducted in August-October 2007 to complete the third annual remotely operated vehicle (ROV)-based assessments of nearshore rocky bottom finfish at ten sites in the northern Channel Islands. Annual surveys at the Channel Islands have been conducted since 2004 at four sites and were expanded to ten sites in 2005 to monitor potential marine protected area (MPA)effects on baseline fish density. Six of the ten sites are in MPAs and four in nearby fished reference areas. In 2007 the amount of soft-only substrate on the 141 track lines surveyed was again estimated in real-time in order to target rocky bottom habitat. These real-time estimates of hard and mixed substrate for all ten sites averaged 57%, 1% more than the post-processed average of 56%. Surveys generated 69.9 km of usable video for use in finfish density calculations, with target rocky bottom habitat accounting for 56% (39.1 km) for all sites combined. The amount of rocky habitat sampled by site averaged 3.8 km and ranged from 3.3 km sampled at South Point, a State Marine Reserve (SMR) off Santa Rosa Island, to 4.7 km at Anacapa Island SMR. A sampling goal of 75 transects at all 10 sites was met using real-time habitat estimates combined with precautionary over-sampling by 10%. A total of seventy kilometers of sampling is projected to produce at least seventy-five 100 m2 transects per site. Thirteen of 26 finfish taxa observed were selected for quantitative evaluation over the time series based on a minimum criterion of abundance (0.05/100 m2). Ten of these 13 finfish appear to be more abundant at the state marine reserves relative to fished areas when densities were averaged across the 2005 to 2007 period. One of the species that appears to be more abundant in fished areas was señorita, a relatively small prey species that is not a commercial or recreational target. (PDF contains 83 pages.)
Resumo:
This report describes cases relating to the management of national marine sanctuaries in which certain scientific information was required so managers could make decisions that effectively protected trust resources. The cases presented represent only a fraction of difficult issues that marine sanctuary managers deal with daily. They include, among others, problems related to wildlife disturbance, vessel routing, marine reserve placement, watershed management, oil spill response, and habitat restoration. Scientific approaches to address these problems vary significantly, and include literature surveys, data mining, field studies (monitoring, mapping, observations, and measurement), geospatial and biogeographic analysis, and modeling. In most cases there is also an element of expert consultation and collaboration among multiple partners, agencies with resource protection responsibilities, and other users and stakeholders. The resulting management responses may involve direct intervention (e.g., for spill response or habitat restoration issues), proposal of boundary alternatives for marine sanctuaries or reserves, changes in agency policy or regulations, making recommendations to other agencies with resource protection responsibilities, proposing changes to international or domestic shipping rules, or development of new education or outreach programs. (PDF contains 37 pages.)
Resumo:
We tagged a total of 14 yellowtail snapper (Ocyurus chrysurus Bloch 1790) and black grouper (Mycteroperca bonaci Poey 1860) inside the Conch Reef Research Only Area (a no-take marine reserve) in the northern Florida Keys National Marine Sanctuary in November 2001. Both species are heavily exploited in the region. Our objective was to characterize site fidelity and movement behavior along the reef tract to the north and south of the release point. Fishes were collected by baited hook and line from the surface, surgically-tagged with coded-acoustic transmitters, and returned to the reef by snorkelers. Tracking of fish movement behavior was conducted by five acoustic receivers deployed on the seafloor from Davis Reef in the south to Pickles Reef in the north. Fishes were tracked for up to eight months. Results indicated that the majority of signal detections for individual fish from both species were recorded at the two Conch Reef receivers. Limited movement from Conch Reef to Davis Reef was recorded, but no signal detections were recorded at the two sites to the north of Conch Reef. These results suggest that both species show site fidelity to Conch Reef. Future studies will seek to characterize this site fidelity with increased temporal and spatial resolution at Conch Reef. (PDF contains 25 pages.)
Resumo:
Marine reserves, often referred to as no-take MPAs, are defined as areas within which human activities that can result in the removal or alteration of biotic and abiotic components of an ecosystem are prohibited or greatly restricted (NRC 2001). Activities typically curtailed within a marine reserve are extraction of organisms (e.g., commercial and recreational fishing, kelp harvesting, commercial collecting), mariculture, and those activities that can alter oceanographic or geologic attributes of the habitat (e.g., mining, shore-based industrial-related intake and discharges of seawater and effluent). Usually, marine reserves are established to conserve biodiversity or enhance nearby fishery resources. Thus, goals and objectives of marine reserves can be inferred, even if they are not specifically articulated at the time of reserve formation. In this report, we review information about the effectiveness of the three marine reserves in the Monterey Bay National Marine Sanctuary (Hopkins Marine Life Refuge, Point Lobos Ecological Reserve, Big Creek Ecological Reserve), and the one in the Channel Islands National Marine Sanctuary (the natural area on the north side of East Anacapa Island). Our efforts to objectively evaluate reserves in Central California relative to reserve theory were greatly hampered for four primary reasons; (1) few of the existing marine reserves were created with clearly articulated goals or objectives, (2) relatively few studies of the ecological consequences of existing reserves have been conducted, (3) no studies to date encompass the spatial and temporal scope needed to identify ecosystem-wide effects of reserve protection, and (4) there are almost no studies that describe the social and economic consequences of existing reserves. To overcome these obstacles, we used several methods to evaluate the effectiveness of subtidal marine reserves in Central California. We first conducted a literature review to find out what research has been conducted in all marine reserves in Central California (Appendix 1). We then reviewed the scientific literature that relates to marine reserve theory to help define criteria to use as benchmarks for evaluation. A recent National Research Council (2001) report summarized expected reserve benefits and provided the criteria we used for evaluation of effectiveness. The next step was to identify the research projects in this region that collected information in a way that enabled us to evaluate reserve theory relative to marine reserves in Central California. Chapters 1-4 in this report provide summaries of those research projects. Contained within these chapters are evaluations of reserve effectiveness for meeting specific objectives. As few studies exist that pertain to reserve theory in Central California, we reviewed studies of marine reserves in other temperate and tropical ecosystems to determine if there were lessons to be learned from other parts of the world (Chapter 5). We also included a discussion of social and economic considerations germane to the public policy decision-making processes associated with marine reserves (Chapter 6). After reviewing all of these resources, we provided a summary of the ecological benefits that could be expected from existing reserves in Central California. The summary is presented in Part II of this report. (PDF contains 133 pages.)