998 resultados para Marine Cyanobacterium
Resumo:
Lagunamides, isolated from a marine cyanobacterium Lyngbya majuscule found in Singapore, showed very potent activities against Plasmodium falciparum and murine leukemia cell line (P388). Herein, a concise synthetic approach toward the total synthesis of a lagunamide B analogue is discussed. Macrolactonization, HWE-olefination, and modified Crimmin's aldol are some of the key reactions featured in this synthesis. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
The marine cyanobacterium Prochlorococcus, the most abundant phototrophic organism on Earth, numerically dominates the phytoplankton in nitrogen (N)-depleted oceanic gyres. Alongside inorganic N sources such as nitrite and ammonium, natural populations of this genus also acquire organic N, specifically amino acids. Here, we investigated using isotopic tracer and flow cytometric cell sorting techniques whether amino acid uptake by Prochlorococcus is subject to a diel rhythmicity, and if so, whether this was linked to a specific cell cycle stage. We observed, in contrast to diurnally similar methionine uptake rates by Synechococcus cells, obvious diurnal rhythms in methionine uptake by Prochlorococcus cells in the tropical Atlantic. These rhythms were confirmed using reproducible cyclostat experiments with a light-synchronized axenic Prochlorococcus (PCC9511 strain) culture and S-35-methionine and H-3-leucine tracers. Cells acquired the tracers at lower rates around dawn and higher rates around dusk despite > 10(4) times higher concentration of ammonium in the medium, presumably because amino acids can be directly incorporated into protein. Leucine uptake rates by cells in the S+G(2) cell cycle stage were consistently 2.2 times higher than those of cells at the G(1) stage. Furthermore, S+G(2) cells upregulated amino acid uptake 3.5 times from dawn to dusk to boost protein synthesis prior to cell division. Because Prochlorococcus populations can account from 13% at midday to 42% at dusk of total microbial uptake of methionine and probably of other amino acids in N-depleted oceanic waters, this genus exerts diurnally variable, strong competitive pressure on other bacterioplankton populations.
Resumo:
Maculalactones A, B and C from the marine cyanobacterium Kyrtuthrix maculans are amongst the only compounds based on the tribenzylbutyrolactone skeleton known in nature and (+) maculalactone A from the natural source possesses significant biological activity against various marine herbivores and marine settlers. We now report a concise synthesis of racemic maculalactone A in five steps from inexpensive starting materials. Maculalactones B and C were synthesized by a minor modification to this procedure, and the synthetic design also permitted an asymmetric synthesis of maculalactone A to be achieved in around 85% ee. The (+) and (-) enantiomers of maculalactone A were assigned, respectively, to the S and R configurations on the basis of the chiral selectivity expected for catecholborane reduction of an unsymmetrical ketone in the presence of Corey's oxazoborolidine catalyst. Surprisingly, it appeared that natural (+) maculalactone A was biosynthesized in K. maculans in a partially racemic form, comprising ca. 90-95% of the (S) enantiomer and 5-10% of its (R) enantiomer. Coincidentally therefore, the percentage enantiomeric excess of the product obtained from asymmetric synthesis almost exactly matched that found in nature. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Cultures of Trichodesmium from the Northern and Southern Great Barrier Reef Lagoon (GBRL) have been established in enriched seawater and artificial seawater media. Some cultures have been maintained with active growth for over 6 years. Actively growing cultures in an artificial seawater medium containing organic phosphorus (glycerophosphate) as the principal source of phosphorus have also been established. Key factors that contributed to the successful establishment of cultures were firstly, the seed samples were collected from depth, secondly, samples were thoroughly washed and thirdly, incubations were conducted under relatively low light intensities (PAR similar to 40-50 mumol quanta m(-2) s(-1)). N-2 fixation rates of the cultured Trichodesmium were found to be similar to those measured in the GBRL. Specific growth rates of the cultures during the exponential growth phase in all enriched media were in the range 0.2-0.3 day(-1) and growth during this phase was characterised by individual trichomes (filaments) or small aggregations of two to three trichomes. Characteristic bundle formation tended to occur following the exponential growth phase, which suggests that the bundle formation was induced by a lack of a necessary nutrient e.g. Fe. Results from some exploratory studies showed that filament-dominated cultures of Trichodesmium grew over a range of relatively low irradiances (PAR similar to 5-120 mumol quanta m(-2) s(-1)) with the maximum growth occurring at - 40-50 mumol quanta m(-2) s(-1). These results suggest that filaments of the tested strain are well adapted for growth at depth in marine waters. Other studies showed that growth yields were dependent on salinity, with maximum growth occurring between 30 and 37 psu. Also the cell yields decreased by an order of magnitude with the reduction of Fe additions from 450 to 45 nM. No active growth was observed with the 4.5 nM Fe addition.
Resumo:
We compared inorganic phosphate (P-i) uptake and growth kinetics of two cultures of the diazotrophic cyanobacterium Trichodesmium isolated from the North Atlantic Ocean (IMS101) and from the Great Barrier Reef, Australia (GBRTRLI101). Phosphate-limited cultures had up to six times higher maximum P-i uptake rates than P-replete cultures in both strains. For strain GBRTRLI101, cell-specific P-i uptake rates were nearly twice as high, due to larger cell size, but P-specific maximum uptake rates were similar for both isolates. Half saturation constants were 0.4 and 0.6 muM for P-i uptake and 0.1 and 0.2 muM for growth in IMS101 and GBRTRLI101, respectively. Phosphate uptake in both strains was correlated to growth rates rather than to light or temperature. The cellular phosphorus quota for both strains increased with increasing P-i up to 1.0 muM. The C:P ratios were 340-390 and N:P ratios were 40-45 for both strains under severely P-limited growth conditions, similar to reported values for natural populations from the tropical Atlantic and Pacific Oceans. The C:P and N:P ratios were near Redfield values in medium with >1.0 muM P-i. The North Atlantic strain IMS101 is better adapted to growing on P-i at low concentrations than is GBRTRLI101 from the more P-i-enriched Great Barrier Reef. However, neither strain can achieve appreciable growth at the very low (nanomolar) P-i concentrations found in most oligotrophic regimes. Phosphate could be an important source of phosphorus for Trichodesmium on the Great Barrier Reef, but populations growing in the oligotrophic open ocean must rely primarily on dissolved organic phosphorus sources.
Resumo:
Lyngbya majuscula, a toxic cyanobacterium, was observed blooming during June-July (winter) 2002 in Shoalwater Bay, Queensland, Australia, an important feeding area for a large population of green turtles (Chelonia mydas). The bloom was mapped and extensive mats of L majuscula were observed overgrowing seagrass beds along at least 18 km of coast, and covering a surface area of more than I I km(2). Higher than average rainfall preceded the bloom and high water temperatures in the preceding summer may have contributed to the bloom. In bloom samples, lyngbyatoxin A (LA) was found to be present in low concentration (26 mu g kg(-1) (dry weight)), but debromoaplysiatoxin (DAT) was not detected. The diet of 46 green turtles was assessed during the bloom and L. majuscula was found in 51% of the samples, however, overall it contributed only 2% of the animals' diets. L. majuscula contribution to turtle diet was found to increase as the availability of the cyanobacterium increased. The bloom appeared to have no immediate impact on turtle body condition, however, the presence of a greater proportion of damaged seagrass leaves in diet in conjunction with decreases in plasma concentrations of sodium and glucose could suggest that the turtles may have been exposed to a Substandard diet as a result of the bloom. This is the first confirmed report of L. majuscula blooming in winter in Shoalwater Bay, Queensland, Australia and demonstrates that turtles consume the toxic cyanobacterium in the wild, and that they are potentially exposed to tumour promoting compounds produced by this organism. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A previously unknown cyanophage, PaV-LD (Planktothrix agardhii Virus isolated from Lake Donghu), which causes lysis of the bloom-forming filamentous cyanobacterium P. agardhii, was isolated from Lake Donghu, Wuhan, China. PaV-LD only lysed P. agardhii strains isolated from Lake Donghu and not those isolated from other lakes. The PaV-LD particle has an icosahedral, non-tailed structure, ca. 70 to 85 nm (mean +/- SD = 76 +/- 6 nm) in diameter. PaV-LD was stable at freezing temperature, but lost its infectivity at temperatures >50 degrees C. Lysis of host cells was delayed about 3 d after the PaV-LD treatment with chloroform, and the virus was inactivated by exposure to low pH (<= 4). The latent period and burst size of the PaV-LD were estimated to be 48 to 72 h and about 340 infectious units per cell, respectively. The regrowth cultures of surviving host filaments were not lysed by the PaV-LD suspension. To our knowledge, this is the first isolation and cultivation of a virus infectious to the filamentous bloom-forming cyanobacterium Planktothrix from a freshwater lake.
Resumo:
There are several apparent developmental stages in the life cycle of Nostoc sphaeroides Kutzing, an edible cyanobacterium found mainly in paddy fields in central China. The cytochemical changes in developmental stages such as hormogonia, aseriate stage, filamentous stage and colony in N. sphaeroides were examined using fluorescent staining and colorimetric methods. The staining of acidic and sulfated polysaccharides increased with development when hormogonia were used as the starting point. Acidic polysaccharides (AP) were most abundant at the aseriate stage and then decreased, while the sulfated polysaccharides (SP) were highest at the colony stage. Quantitatively, along the developmental process from hormogonia to colony, total carbohydrates first increased, then became stable, and then reached their highest level at the colony stage, while reducing sugars were highest at the hormogonia stage and then decreased sharply once development began. SP were not detectable in the hot water soluble polysaccharides (HWSP), and hormogonia had the lowest content of AP, while old colonies had the highest. The AP content of the aseriate stage, filamentous stage and young colony stage were very similar. The evolutionary relationships reflected in the developmental stages of N. sphaeroides are discussed.
Resumo:
The phytoplankton community in Lake Dianchi (Yunnan Province, Southwestern China) is dominated in April by a bloom of Aphanizomenon, that disappears Suddenly and is displaced by a Microcystis bloom in May. The reasons for the rapid bloom disappearance phenomenon and the temporal variability in the composition of phytoplankton assemblages are poorly understood. Cell growth, ultrastructure and physiological changes were examined in cultures of Aphanizomenon sp. DC01 isolated from Lake Dianchi exposed to different closes of rnicrocystin-RR (MC-RR) produced by the Microcystis bloom. MC-RR concentrations above 100 mu g L-1 markedly inhibited the pigment (chlorophyll-a, phycocyanin) synthesis and caused an increase of soluble carbohydrate and protein contents and nitrate reductase activity of toxin-treated blue-green algae. A drastic. reduction in photochemical efficiency of PSII (Fv/Fm) was also found. Morphological examinationn showed that the Aphanizomenon filaments disintegrated and file cells lysed gradually after 48 h Of toxin exposure. Transmission electron microscopy revealed that cellular inclusions of stressed cells almost leaked out completely and the cell membranes were grossly damaged. These findings demonstrate the allelopathic activity of Microcystis aeruginosa inducing physiological stress and cell death of Aphanizomenon sp. DC01 Although the active concentrations of microcystin were rather high, we propose that microcystin may function as allelopathic Substance due to inhomogeneous toxin concentrations close to Microcystis cells. Hence, it may play a role in species Succession of Aphanizomenon and Microcystis in Lake Dianchi.
Resumo:
The dynamics of planktonic cyanobacteria in eutrophicated freshwaters play an important role in formation of annual summer blooms, yet overwintering mechanisms of these water bloom forming cyanobacteria remain unknown. The responses to darkness and low temperature of three strains (unicellular Microcystis aeruginosa FACHB-905, colonial M. aeruginosa FACHB-938, and a green alga Scenedesmus quadricauda FACHB-45) were investigated in the present study. After a 30-day incubation under darkness and low temperature, cell morphology, cell numbers, chlorophyll a, photosynthetic activity (ETRmax and I-k), and malodialdehyde (MDA) content exhibited significant changes in Scenedesmus. In contrast, Microcystis aeruginosa cells did not change markedly in morphology, chlorophyll a, photosynthetic activity, and MDA content. The stress caused by low temperature and darkness resulted in an increase of the antioxidative enzyme-catalase (CAT) in all three strains. When the three strains re-grew under routine cultivated condition subjected to darkness and low temperature, specific growth rate of Scenedesmus was lower than that of Microcystis. Flow cytometry (FCM) examination indicated that two distinct types of metabolic response to darkness and low temperature existed in the three strains. The results from the present study reveal that the cyanobacterium Microcystis, especially colonial Microcystis, has greater endurance and adaptation ability to the stress of darkness and low temperature than the green alga Scenedesmus.
Resumo:
Photosynthesis by phytoplankton cells in aquatic environments contributes to more than 40% of the global primary production (Behrenfeld et al., 2006). Within the euphotic zone (down to 1% of surface photosynthetically active radiation [PAR]), cells are exposed not only to PAR (400-700 nm) but also to UV radiation (UVR; 280-400 nm) that can penetrate to considerable depths (Hargreaves, 2003). In contrast to PAR, which is energizing to photosynthesis, UVR is usually regarded as a stressor (Hader, 2003) and suggested to affect CO2-concentrating mechanisms in phytoplankton (Beardall et al., 2002). Solar UVR is known to reduce photosynthetic rates (Steemann Nielsen, 1964; Helbling et al., 2003), and damage cellular components such as D1 proteins (Sass et al., 1997) and DNA molecules (Buma et al., 2003). It can also decrease the growth (Villafane et al., 2003) and alter the rate of nutrient uptake (Fauchot et al., 2000) and the fatty acid composition (Goes et al., 1994) of phytoplankton. Recently, it has been found that natural levels of UVR can alter the morphology of the cyanobacterium Arthrospira (Spirulina) platensis (Wu et al., 2005b). On the other hand, positive effects of UVR, especially of UV- A (315-400 nm), have also been reported. UV- A enhances carbon fixation of phytoplankton under reduced (Nilawati et al., 1997; Barbieri et al., 2002) or fast-fluctuating (Helbling et al., 2003) solar irradiance and allows photorepair of UV- B-induced DNA damage (Buma et al., 2003). Furthermore, the presence of UV-A resulted in higher biomass production of A. platensis as compared to that under PAR alone (Wu et al., 2005a). Energy of UVR absorbed by the diatom Pseudo-nitzschia multiseries was found to cause fluorescence (Orellana et al., 2004). In addition, fluorescent pigments in corals and their algal symbiont are known to absorb UVR and play positive roles for the symbiotic photosynthesis and photoprotection (Schlichter et al., 1986; Salih et al., 2000). However, despite the positive effects that solar UVR may have on aquatic photosynthetic organisms, there is no direct evidence to what extent and howUVR per se is utilized by phytoplankton. In addition, estimations of aquatic biological production have been carried out in incubations considering only PAR (i. e. using UV-opaque vials made of glass or polycarbonate; Donk et al., 2001) without UVR being considered (Hein and Sand-Jensen, 1997; Schippers and Lurling, 2004). Here, we have found that UVR can act as an additional source of energy for photosynthesis in tropical marine phytoplankton, though it occasionally causes photoinhibition at high PAR levels. While UVR is usually thought of as damaging, our results indicate that UVR can enhance primary production of phytoplankton. Therefore, oceanic carbon fixation estimates may be underestimated by a large percentage if UVR is not taken into account.
Resumo:
Microcystins, one type of the cyanobacterial toxins, show a broad range of hazardous effects on other organisms. Most of the researches on the toxic effects of microcystins have involved in animals and higher plants. Little work, however, has been done on evaluating the mechanisms of microcystin toxicity on algae. In this study, the toxicological effects of microcystin-RR (MC-RR) on the cyanobacterium Synechococcus elongatus were investigated. For this purpose, six physio-biochemical parameters (cell optical density, reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH), glutathione peroxidase (GSH-Px) and glutathione S-transferase (GST)) were tested in algal cells when exposed to 100 mug(-1) microcystin-RR. The results showed that the growth of Synechococcus elongatus ( expressed as optical density) was significantly inhibited compared with the control. At the same time, the treated algae exhibited a pronounced increase in production of ROS and MDA after 6 days exposure to microcystin-RR. Signi. cant changes in GSH levels and GSH-Px, GSH activities were also detected in algal cells, with higher values being observed in the toxin treated algae after 6 days exposure. GST activities in the treated algae exhibited a decline after exposure and rapid augmentation on day 3, thereafter, they kept at a high level when compared to the control group. GSH contents and GSH-Px activities were also significantly raised in the toxin-treated algae cells from day 3, but they showed a sharp decrease on day 4, which was the onward of cell proliferation. These results suggested that oxidative stress manifested by elevated ROS levels and MDA contents might be responsible for the toxicity of microcystin to Synechococcus elongatus and the algal cells could improve their antioxidant ability through the enhancement of enzymatic and non-enzymatic preventive substances.
Resumo:
Algal size can affect the rate of metabolism and of growth. Different sized colonies of Nostoc sphaeroides were used with the aim of determining the effects of colony size on photosynthetic physiology and growth. Small colonies showed higher maximum photosynthetic rates per unit chlorophyll, higher light saturation point, and higher photosynthetic efficiency (a) than large colonies. Furthermore, small colonies had a higher affinity for DIC and higher DIC-saturated photosynthetic rates. In addition, small colonies showed higher photosynthetic rates from 5-45degreesC than large colonies. There was a greater decrease in Fv/Fm after exposure to high irradiance and less recovery in darkness for large colonies than for small colonies. Relative growth rate decreased with increasing colony size. Small colonies had less chl a and mass per unit surface area. The results indicate that small colonies can harvest light and acquire DIC more efficiently and have higher maximum photosynthetic rates and growth rates than large colonies.
Resumo:
Both colonies and free-living cells of the terrestrial cyanobacterium, Nostoc flagelliforme (Berk. & Curtis) Bornet & Flahault, were cultured under aquatic conditions to develop the techniques for the cultivation and restoration of this endangered resource. The colonial filaments disintegrated with their sheaths ruptured in about 2 days without any desiccating treatments. Periodic desiccation played an important role in preventing the alga from decomposing, with greater delays to sheath rupture with a higher frequency of exposure to air. The bacterial numbers in the culture treated with seven periods of desiccation per day were about 50% less compared with the cultures without the desiccation treatment. When bacteria in the culture were controlled, the colonial filaments did not disintegrate and maintained the integrity of their sheath for about 20 days even without the desiccation treatments, indicating the importance of desiccation for N. flagelliforme to prevent them from being disintegrated by bacteria. On the other hand, when free-living cells obtained from crushed colonial filaments were cultured in liquid medium, they developed into single filaments with sheaths, within which multiple filaments were formed later on as a colony. Such colonial filaments were developed at 15, 25, and 30degreesC at either 20 or 60 mumol photons.m(-2).s(-1); colonies did not develop at 180 mumol photons.m(-2).s(-1), though this light level resulted in the most rapid growth of the cells. Conditions of 60 mumol photons.m(-2).s(-1) and 25degrees C appeared to result in the best colonial development and faster growth of the sheath-held colonies of N. flagelliforme when cultured indoor under aquatic conditions.