93 resultados para Margulis Spacetimes
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We analyze free elementary particles with a rest mass m and total energy E
Resumo:
In this work, a version of Fermat's principle for causal curves with the same energy in time orientable Finsler spacetimes is proved. We calculate the second variation of the time arrival functional along a geodesic in terms of the index form associated with the Finsler spacetime Lagrangian. Then the character of the critical points of the time arrival functional is investigated and a Morse index theorem in the context of Finsler spacetime is presented. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4765066]
Asympotic behaviour of zero mass fields with spin 1 or 2 propagating on curved background spacetimes
Resumo:
The aim of this work is to explore, within the framework of the presumably asymptotically safe Quantum Einstein Gravity, quantum corrections to black hole spacetimes, in particular in the case of rotating black holes. We have analysed this problem by exploiting the scale dependent Newton s constant implied by the renormalization group equation for the effective average action, and introducing an appropriate "cutoff identification" which relates the renormalization scale to the geometry of the spacetime manifold. We used these two ingredients in order to "renormalization group improve" the classical Kerr metric that describes the spacetime generated by a rotating black hole. We have focused our investigation on four basic subjects of black hole physics. The main results related to these topics can be summarized as follows. Concerning the critical surfaces, i.e. horizons and static limit surfaces, the improvement leads to a smooth deformation of the classical critical surfaces. Their number remains unchanged. In relation to the Penrose process for energy extraction from black holes, we have found that there exists a non-trivial correlation between regions of negative energy states in the phase space of rotating test particles and configurations of critical surfaces of the black hole. As for the vacuum energy-momentum tensor and the energy conditions we have shown that no model with "normal" matter, in the sense of matter fulfilling the usual energy conditions, can simulate the quantum fluctuations described by the improved Kerr spacetime that we have derived. Finally, in the context of black hole thermodynamics, we have performed calculations of the mass and angular momentum of the improved Kerr black hole, applying the standard Komar integrals. The results reflect the antiscreening character of the quantum fluctuations of the gravitational field. Furthermore we calculated approximations to the entropy and the temperature of the improved Kerr black hole to leading order in the angular momentum. More generally we have proven that the temperature can no longer be proportional to the surface gravity if an entropy-like state function is to exist.
Resumo:
Lifshitz spacetimes with the critical exponent z = 2 can be obtained by the dimensional reduction of Schrödinger spacetimes with the critical exponent z = 0. The latter spacetimes are asymptotically AdS solutions of AdS gravity coupled to an axion–dilaton system and can be uplifted to solutions of type IIB supergravity. This basic observation is used to perform holographic renormalization for four-dimensional asymptotically z = 2 locally Lifshitz spacetimes by the Scherk–Schwarz dimensional reduction of the corresponding problem of holographic renormalization for five-dimensional asymptotically locally AdS spacetimes coupled to an axion–dilaton system. We can thus define and characterize a four-dimensional asymptotically locally z = 2 Lifshitz spacetime in terms of five-dimensional AdS boundary data. In this setup the four-dimensional structure of the Fefferman–Graham expansion and the structure of the counterterm action, including the scale anomaly, will be discussed. We find that for asymptotically locally z = 2 Lifshitz spacetimes obtained in this way, there are two anomalies each with their own associated nonzero central charge. Both anomalies follow from the Scherk–Schwarz dimensional reduction of the five-dimensional conformal anomaly of AdS gravity coupled to an axion–dilaton system. Together, they make up an action that is of the Horava–Lifshitz type with a nonzero potential term for z = 2 conformal gravity.
Resumo:
We consider black probes of Anti-de Sitter and Schrödinger spacetimes embedded in string theory and M-theory and construct perturbatively new black hole geometries. We begin by reviewing black string configurations in Anti-de Sitter dual to finite temperature Wilson loops in the deconfined phase of the gauge theory and generalise the construction to the confined phase. We then consider black strings in thermal Schrödinger, obtained via a null Melvin twist of the extremal D3-brane, and construct three distinct types of black string configurations with spacelike as well as lightlike separated boundary endpoints. One of these configurations interpolates between the Wilson loop operators, with bulk duals defined in Anti-de Sitter and another class of Wilson loop operators, with bulk duals defined in Schrödinger. The case of black membranes with boundary endpoints on the M5-brane dual to Wilson surfaces in the gauge theory is analysed in detail. Four types of black membranes, ending on the null Melvin twist of the extremal M5-brane exhibiting the Schrödinger symmetry group, are then constructed. We highlight the differences between Anti-de Sitter and Schrödinger backgrounds and make some comments on the properties of the corresponding dual gauge theories.
Resumo:
Doubt is cast on the much quoted results of Yakupov that the torsion vector in embedding class two vacuum space-times is necessarily a gradient vector and that class 2 vacua of Petrov type III do not exist. The rst result is equivalent to the fact that the two second fundamental forms associated with the embedding necessarily commute and has been assumed in most later investigations of class 2 vacuum space-times. Yakupov stated the result without proof, but hinted that it followed purely algebraically from his identity: Rijkl Ckl = 0 where Cij is the commutator of the two second fundamental forms of the embedding.From Yakupov's identity, it is shown that the only class two vacua with non-zero commutator Cij must necessarily be of Petrov type III or N. Several examples are presented of non-commuting second fundamental forms that satisfy Yakupovs identity and the vacuum condition following from the Gauss equation; both Petrov type N and type III examples occur. Thus it appears unlikely that his results could follow purely algebraically. The results obtained so far do not constitute denite counter-examples to Yakupov's results as the non-commuting examples could turn out to be incompatible with the Codazzi and Ricci embedding equations. This question is currently being investigated.
Resumo:
This thesis comprises some studies on the Weyl, Vaidya and Weyl distorted Schwarzschild (WDS) spacetimes. The main focal areas are : a) construction of near horizon metric(NHM) for WDS spacetime and subsequently a "stretched horizon" prescribed by the membrane formalism for black holes, b) application of membrane formalism and construction of stretched horizons for Vaidya spacetime and c) using the thin shell formalism to construct an asymptotically flat spacetime with a Weyl interior where the construction does not violate energy conditions. For a), a standard formalism developed in [1] has been used wherein the metric is expanded as a Taylor series in ingoing Gaussian null coordinates with the affine parameter as the expansion parameter. This expansion is used to construct a timelike "stretched horizon" just outside the true horizon to facilitate some membrane formalism studies, the theory for which was first introduced in [2]. b) applies the membrane formalism to Vaidya spacetime and also extends a part of the work done in [1] in which event horizon candidates were located perturbatively. Here, we locate stretched horizons in close proximity to every event horizon candidate located in [1]. c) is an attempt to induce Weyl distortions with a thin shell of matter in an asymptotically flat spacetime without violating energy conditions.
Resumo:
Einstein spacetimes (that is vacuum spacetimes possibly with a non-zero cosmological constant A) with constant non-zero Weyl eigenvalues are considered. For type Petrov II & D this assumption allows one to prove that the non-repeated eigenvalue necessarily has the value 2A/3 and it turns out that the only possible spacetimes are some Kundt-waves considered by Lewandowski which are type II and a Robinson-Bertotti solution of type D. For Petrov type I the only solution turns out to be a homogeneous pure vacuum solution found long ago by Petrov using group theoretic methods. These results can be summarised by the statement that the only vacuum spacetimes with constant Weyl eigenvalues are either homogeneous or are Kundt spacetimes. This result is similar to that of Coley et al. who proved their result for general spacetimes under the assumption that all scalar invariants constructed from the curvature tensor and all its derivatives were constant.
Resumo:
Black hole's response to external perturbations will carry significant information about these exotic objects. Its response, shortly after the initial `kick', is known to be ruled by the damped oscillation of the perturbating eld, called quasinormal modes(QNMs), followed by the tails of decay and is the characteristic of the background black hole spacetime. In the last three decades, several shortcomings came out in the Einstein's General Theory of Relativity(GTR). Such issues come, especially, from observational cosmology and quantum eld theory. In the rst case, for example, the observed accelerated expansion of the universe and the hypothesized mysterious dark energy still lack a satisfactory explanation. Secondly, GTR is a classical theory which does not work as a fundamental theory, when one wants to achieve a full quantum description of gravity. Due to these facts modi cation to GTR or alternative theories for gravity have been considered. Two potential approaches towards these problems are the quintessence model for dark energy and Ho rava-Lifshitz(HL) gravity. Quintessence is a dynamical model of dark energy which is often realized by scalar eld mechanism. HL gravity is the recently proposed theory of gravity, which is renormalizable in power counting arguments. The two models are considered as a potential candidate in explaining these issues.
Resumo:
Dynamical Chern-Simons gravity is an extension of general relativity in which the gravitational field is coupled to a scalar field through a parity-violating Chern-Simons term. In this framework, we study perturbations of spherically symmetric black hole spacetimes, assuming that the background scalar field vanishes. Our results suggest that these spacetimes are stable, and small perturbations die away as a ringdown. However, in contrast to standard general relativity, the gravitational waveforms are also driven by the scalar field. Thus, the gravitational oscillation modes of black holes carry imprints of the coupling to the scalar field. This is a smoking gun for Chern-Simons theory and could be tested with gravitational-wave detectors, such as LIGO or LISA. For negative values of the coupling constant, ghosts are known to arise, and we explicitly verify their appearance numerically. Our results are validated using both time evolution and frequency domain methods.
Resumo:
Quantum field theories (QFT's) on noncommutative spacetimes are currently under intensive study. Usually such theories have world sheet noncommutativity. In the present work, instead, we study QFT's with commutative world sheet and noncommutative target space. Such noncommutativity can be interpreted in terms of twisted statistics and is related to earlier work of Oeckl [R. Oeckl, Commun. Math. Phys. 217, 451 (2001)], and others [A. P. Balachandran, G. Mangano, A. Pinzul, and S. Vaidya, Int. J. Mod. Phys. A 21, 3111 (2006); A. P. Balachandran, A. Pinzul, and B. A. Qureshi, Phys. Lett. B 634,434 (2006); A.P. Balachandran, A. Pinzul, B.A. Qureshi, and S. Vaidya, arXiv:hep-th/0608138; A.P. Balachandran, T. R. Govindarajan, G. Mangano, A. Pinzul, B.A. Qureshi, and S. Vaidya, Phys. Rev. D 75, 045009 (2007); A. Pinzul, Int. J. Mod. Phys. A 20, 6268 (2005); G. Fiore and J. Wess, Phys. Rev. D 75, 105022 (2007); Y. Sasai and N. Sasakura, Prog. Theor. Phys. 118, 785 (2007)]. The twisted spectra of their free Hamiltonians has been found earlier by Carmona et al. [J. M. Carmona, J. L. Cortes, J. Gamboa, and F. Mendez, Phys. Lett. B 565, 222 (2003); J. M. Carmona, J. L. Cortes, J. Gamboa, and F. Mendez, J. High Energy Phys. 03 (2003) 058]. We review their derivation and then compute the partition function of one such typical theory. It leads to a deformed blackbody spectrum, which is analyzed in detail. The difference between the usual and the deformed blackbody spectrum appears in the region of high frequencies. Therefore we expect that the deformed blackbody radiation may potentially be used to compute a Greisen-Zatsepin-Kuzmin cutoff which will depend on the noncommutative parameter theta.