844 resultados para Many-valued logic


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fuzzy set theory and Fuzzy logic is studied from a mathematical point of view. The main goal is to investigatecommon mathematical structures in various fuzzy logical inference systems and to establish a general mathematical basis for fuzzy logic when considered as multi-valued logic. The study is composed of six distinct publications. The first paper deals with Mattila'sLPC+Ch Calculus. THis fuzzy inference system is an attempt to introduce linguistic objects to mathematical logic without defining these objects mathematically.LPC+Ch Calculus is analyzed from algebraic point of view and it is demonstratedthat suitable factorization of the set of well formed formulae (in fact, Lindenbaum algebra) leads to a structure called ET-algebra and introduced in the beginning of the paper. On its basis, all the theorems presented by Mattila and many others can be proved in a simple way which is demonstrated in the Lemmas 1 and 2and Propositions 1-3. The conclusion critically discusses some other issues of LPC+Ch Calculus, specially that no formal semantics for it is given.In the second paper the characterization of solvability of the relational equation RoX=T, where R, X, T are fuzzy relations, X the unknown one, and o the minimum-induced composition by Sanchez, is extended to compositions induced by more general products in the general value lattice. Moreover, the procedure also applies to systemsof equations. In the third publication common features in various fuzzy logicalsystems are investigated. It turns out that adjoint couples and residuated lattices are very often present, though not always explicitly expressed. Some minor new results are also proved.The fourth study concerns Novak's paper, in which Novak introduced first-order fuzzy logic and proved, among other things, the semantico-syntactical completeness of this logic. He also demonstrated that the algebra of his logic is a generalized residuated lattice. In proving that the examination of Novak's logic can be reduced to the examination of locally finite MV-algebras.In the fifth paper a multi-valued sentential logic with values of truth in an injective MV-algebra is introduced and the axiomatizability of this logic is proved. The paper developes some ideas of Goguen and generalizes the results of Pavelka on the unit interval. Our proof for the completeness is purely algebraic. A corollary of the Completeness Theorem is that fuzzy logic on the unit interval is semantically complete if, and only if the algebra of the valuesof truth is a complete MV-algebra. The Compactness Theorem holds in our well-defined fuzzy sentential logic, while the Deduction Theorem and the Finiteness Theorem do not. Because of its generality and good-behaviour, MV-valued logic can be regarded as a mathematical basis of fuzzy reasoning. The last paper is a continuation of the fifth study. The semantics and syntax of fuzzy predicate logic with values of truth in ana injective MV-algerba are introduced, and a list of universally valid sentences is established. The system is proved to be semanticallycomplete. This proof is based on an idea utilizing some elementary properties of injective MV-algebras and MV-homomorphisms, and is purely algebraic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The basic construction concepts of many-valued intellectual systems, which are adequate to primal problems of person activity and using hybrid tools with many-valued of coding are considered. The many-valued intellectual systems being two-place, but simulating neuron processes of space toting which are different on a level of actions, inertial and threshold of properties of neurons diaphragms, and also modification of frequency of following of the transmitted messages are created. All enumerated properties and functions in point of fact are essential not only are discrete on time, but also many-valued.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The basic construction concepts of many-valued intellectual systems, which are adequate to primal problems of person activity and using hybrid tools with many-valued intellectual systems being two-place, but simulating neuron processes of space toting which are different on a level of actions, inertial and threshold of properties of neuron diaphragms, and also frequency modification of the following transmitted messages are created. All enumerated properties and functions in point of fact are essential not only are discrete on time, but also many-valued.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Suszko’s Thesis is a philosophical claim regarding the nature of many-valuedness. It was formulated by the Polish logician Roman Suszko during the middle 70s and states the existence of “only but two truth values”. The thesis is a reaction against the notion of many-valuedness conceived by Jan Łukasiewicz. Reputed as one of the modern founders of many-valued logics, Łukasiewicz considered a third undetermined value in addition to the traditional Fregean values of Truth and Falsehood. For Łukasiewicz, his third value could be seen as a step beyond the Aristotelian dichotomy of Being and non-Being. According to Suszko, Łukasiewicz’s ideas rested on a confusion between algebraic values (what sentences describe/denote) and logical values (truth and falsity). Thus, Łukasiewicz’s third undetermined value is no more than an algebraic value, a possible denotation for a sentence, but not a genuine logical value. Suszko’s Thesis is endorsed by a formal result baptized as Suszko’s Reduction, a theorem that states every Tarskian logic may be characterized by a two-valued semantics. The present study is intended as a thorough investigation of Suszko’s thesis and its implications. The first part is devoted to the historical roots of many-valuedness and introduce Suszko’s main motivations in formulating the double character of truth-values by drawing the distinction in between algebraic and logical values. The second part explores Suszko’s Reduction and presents the developments achieved from it; the properties of two-valued semantics in comparison to many-valued semantics are also explored and discussed. Last but not least, the third part investigates the notion of logical values in the context of non-Tarskian notions of entailment; the meaning of Suszko’s thesis within such frameworks is also discussed. Moreover, the philosophical foundations for non-Tarskian notions of entailment are explored in the light of recent debates concerning logical pluralism.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Residuated lattices, although originally considered in the realm of algebra providing a general setting for studying ideals in ring theory, were later shown to form algebraic models for substructural logics. The latter are non-classical logics that include intuitionistic, relevance, many-valued, and linear logic, among others. Most of the important examples of substructural logics are obtained by adding structural rules to the basic logical calculus

Relevância:

90.00% 90.00%

Publicador:

Resumo:

* The work is partially supported by Grant no. NIP917 of the Ministry of Science and Education – Republic of Bulgaria.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work describes a methodology to extract symbolic rules from trained neural networks. In our approach, patterns on the network are codified using formulas on a Lukasiewicz logic. For this we take advantage of the fact that every connective in this multi-valued logic can be evaluated by a neuron in an artificial network having, by activation function the identity truncated to zero and one. This fact simplifies symbolic rule extraction and allows the easy injection of formulas into a network architecture. We trained this type of neural network using a back-propagation algorithm based on Levenderg-Marquardt algorithm, where in each learning iteration, we restricted the knowledge dissemination in the network structure. This makes the descriptive power of produced neural networks similar to the descriptive power of Lukasiewicz logic language, minimizing the information loss on the translation between connectionist and symbolic structures. To avoid redundance on the generated network, the method simplifies them in a pruning phase, using the "Optimal Brain Surgeon" algorithm. We tested this method on the task of finding the formula used on the generation of a given truth table. For real data tests, we selected the Mushrooms data set, available on the UCI Machine Learning Repository.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La principal contribución de esta Tesis es la propuesta de un modelo de agente BDI graduado (g-BDI) que permita especificar una arquitetura de agente capaz de representar y razonar con actitudes mentales graduadas. Consideramos que una arquitectura BDI más exible permitirá desarrollar agentes que alcancen mejor performance en entornos inciertos y dinámicos, al servicio de otros agentes (humanos o no) que puedan tener un conjunto de motivaciones graduadas. En el modelo g-BDI, las actitudes graduadas del agente tienen una representación explícita y adecuada. Los grados en las creencias representan la medida en que el agente cree que una fórmula es verdadera, en los deseos positivos o negativos permiten al agente establecer respectivamente, diferentes niveles de preferencias o de rechazo. Las graduaciones en las intenciones también dan una medida de preferencia pero en este caso, modelan el costo/beneficio que le trae al agente alcanzar una meta. Luego, a partir de la representación e interacción de estas actitudes graduadas, pueden ser modelados agentes que muestren diferentes tipos de comportamiento. La formalización del modelo g-BDI está basada en los sistemas multi-contextos. Diferentes lógicas modales multivaluadas se han propuesto para representar y razonar sobre las creencias, deseos e intenciones, presentando en cada caso una axiomática completa y consistente. Para tratar con la semántica operacional del modelo de agente, primero se definió un calculus para la ejecución de sistemas multi-contextos, denominado Multi-context calculus. Luego, mediante este calculus se le ha dado al modelo g-BDI semántica computacional. Por otra parte, se ha presentado una metodología para la ingeniería de agentes g-BDI en un escenario multiagente. El objeto de esta propuesta es guiar el diseño de sistemas multiagentes, a partir de un problema del mundo real. Por medio del desarrollo de un sistema recomendador en turismo como caso de estudio, donde el agente recomendador tiene una arquitectura g-BDI, se ha mostrado que este modelo es valioso para diseñar e implementar agentes concretos. Finalmente, usando este caso de estudio se ha realizado una experimentación sobre la flexibilidad y performance del modelo de agente g-BDI, demostrando que es útil para desarrollar agentes que manifiesten conductas diversas. También se ha mostrado que los resultados obtenidos con estos agentes recomendadores modelizados con actitudes graduadas, son mejores que aquellos alcanzados por los agentes con actitudes no-graduadas.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Axiomatic bases of admissible rules are obtained for fragments of the substructural logic R-mingle. In particular, it is shown that a ‘modus-ponens-like’ rule introduced by Arnon Avron forms a basis for the admissible rules of its implication and implication–fusion fragments, while a basis for the admissible rules of the full multiplicative fragment requires an additional countably infinite set of rules. Indeed, this latter case provides an example of a three-valued logic with a finitely axiomatizable consequence relation that has no finite basis for its admissible rules.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Una de las dificultades principales en el desarrollo de software es la ausencia de un marco conceptual adecuado para su estudio. Una propuesta la constituye el modelo transformativo, que entiende el desarrollo de software como un proceso iterativo de transformación de especificaciones: se parte de una especificación inicial que va transformándose sucesivamente hasta obtener una especificación final que se toma como programa. Este modelo básico puede llevarse a la práctica de varias maneras. En concreto, la aproximación deductiva toma una sentencia lógica como especificación inicial y su proceso transformador consiste en la demostración de la sentencia; como producto secundario de la demostración se deriva un programa que satisface la especificación inicial. La tesis desarrolla un método deductivo para la derivación de programas funcionales con patrones, escritos en un lenguaje similar a Hope. El método utiliza una lógica multigénero, cuya relación con el lenguaje de programación es estudiada. También se identifican los esquemas de demostración necesarios para la derivación de funciones con patrones, basados en la demostración independiente de varias subsentencias. Cada subsentencia proporciona una subespecificación de una ecuación del futuro programa a derivar. Nuestro método deductivo está inspirado en uno previo de Zohar Manna y Richard Waldinger, conocido como el cuadro deductivo, que deriva programas en un lenguaje similar a Lisp. El nuevo método es una modificación del cuadro de estos autores, que incorpora géneros y permite demostrar una especificación mediante varios cuadros. Cada cuadro demuestra una subespecificación y por tanto deriva una ecuación del programa. Se prevén mecanismos para que los programas derivados puedan contener definiciones locales con patrones y variables anónimas y sinónimas y para que las funciones auxiliares derivadas no usen variables de las funciones principales. La tesis se completa con varios ejemplos de aplicación, un mecanismo que independentiza el método del lenguaje de programación y un prototipo de entorno interactivo de derivación deductiva. Categorías y descriptores de materia CR D.l.l [Técnicas de programación]: Programación funcional; D.2.10 [Ingeniería de software]: Diseño - métodos; F.3.1 [Lógica y significado de los programas]: Especificación, verificación y razonamiento sobre programas - lógica de programas; F.3.3 [Lógica y significado de los programas]: Estudios de construcciones de programas - construcciones funcionales; esquemas de programa y de recursion; 1.2.2 [Inteligencia artificial]: Programación automática - síntesis de programas; 1.2.3 [Inteligencia artificial]: Deducción y demostración de teoremas]: extracción de respuesta/razón; inducción matemática. Términos generales Programación funcional, síntesis de programas, demostración de teoremas. Otras palabras claves y expresiones Funciones con patrones, cuadro deductivo, especificación parcial, inducción estructural, teorema de descomposición.---ABSTRACT---One of the main difficulties in software development is the lack of an adequate conceptual framework of study. The transformational model is one such proposal that conceives software development as an iterative process of specifications transformation: an initial specification is developed and successively transformed until a final specification is obtained and taken as a program. This basic model can be implemented in several ways. The deductive approach takes a logical sentence as the initial specification and its proof constitutes the transformational process; as a byproduct of the proof, a program which satisfies the initial specification is derived. In the thesis, a deductive method for the derivation of Hope-like functional programs with patterns is developed. The method uses a many-sorted logic, whose relation to the programming language is studied. Also the proof schemes necessary for the derivation of functional programs with patterns, based on the independent proof of several subsentences, are identified. Each subsentence provides a subspecification of one equation of the future program to be derived. Our deductive method is inspired on a previous one by Zohar Manna and Richard Waldinger, known as the deductive tableau, which derives Lisp-like programs. The new method incorporates sorts in the tableau and allows to prove a sentence with several tableaux. Each tableau proves a subspecification and therefore derives an equation of the program. Mechanisms are included to allow the derived programs to contain local definitions with patterns and anonymous and synonymous variables; also, the derived auxiliary functions cannot reference parameters of their main functions. The thesis is completed with several application examples, i mechanism to make the method independent from the programming language and an interactive environment prototype for deductive derivation. CR categories and subject descriptors D.l.l [Programming techniques]: Functional programming; D.2.10 [Software engineering]: Design - methodologies; F.3.1 [Logics and meanings of programa]: Specifying and verifying and reasoning about programs - logics of programs; F.3.3 [Logics and meanings of programs]: Studies of program constructs - functional constructs; program and recursion schemes; 1.2.2 [Artificial intelligence]: Automatic programming - program synthesis; 1.2.3 [Artificial intelligence]: Deduction and theorem proving - answer/reason extraction; mathematical induction. General tenas Functional programming, program synthesis, theorem proving. Additional key words and phrases Functions with patterns, deductive tableau, structural induction, partial specification, descomposition theorem.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this position paper we propose a consistent and unifying view to all those basic knowledge representation models that are based on the existence of two somehow opposite fuzzy concepts. A number of these basic models can be found in fuzzy logic and multi-valued logic literature. Here it is claimed that it is the semantic relationship between two paired concepts what determines the emergence of different types of neutrality, namely indeterminacy, ambivalence and conflict, widely used under different frameworks (possibly under different names). It will be shown the potential relevance of paired structures, generated from two paired concepts together with their associated neutrality, all of them to be modeled as fuzzy sets. In this way, paired structures can be viewed as a standard basic model from which different models arise. This unifying view should therefore allow a deeper analysis of the relationships between several existing knowledge representation formalisms, providing a basis from which more expressive models can be later developed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Multiplication and comultiplication of beliefs represent a generalisation of multiplication and comultiplication of probabilities as well as of binary logic AND and OR. Our approach follows that of subjective logic, where belief functions are expressed as opinions that are interpreted as being equivalent to beta probability distributions. We compare different types of opinion product and coproduct, and show that they represent very good approximations of the analytical product and coproduct of beta probability distributions. We also define division and codivision of opinions, and compare our framework with other logic frameworks for combining uncertain propositions. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we examine discrete functions that depend on their variables in a particular way, namely the H-functions. The results obtained in this work make the “construction” of these functions possible. H-functions are generalized, as well as their matrix representation by Latin hypercubes.