878 resultados para Management of organizational risk
Resumo:
En el contexto organizacional actual, que se caracteriza por ser hiper-conectado, cambiante, globalizado y cargado de incertidumbre, la capacidad de las organizaciones para identificar y tratar provechosamente el riesgo se hace necesaria e ineludible. Dicho más claro: gestionar adecuadamente el riesgo se convierte en un aspecto crítico para la perdurabilidad de las organizaciones. Más allá de las comprensiones tradicionales del riesgo, cuyo núcleo es el riesgo financiero, nuevas tendencias –más generales y abarcadoras– se han gestado en las últimas décadas. Una de la más destacada es la gestión del riesgo sistémico. Pese a este reconocimiento, sin embargo, siguen predominando los enfoques analítico-financieros, sobre todo en el ámbito latinoamericano. Este trabajo de grado pretende, por tanto, hacer un análisis sobre la gestión del riesgo sistémico e identificar las diferentes tendencias del riesgo y sus potencialidades de cara al ambiente organizacional actual.
Resumo:
Risk management and knowledge management have so far been studied almost independently. The evolution of risk management to the holistic view of Enterprise Risk Management requires the destruction of barriers between organizational silos and the exchange and application of knowledge from different risk management areas. However, knowledge management has received little or no attention in risk management. This paper examines possible relationships between knowledge management constructs related to knowledge sharing, and two risk management concepts: perceived quality of risk control and perceived value of enterprise risk management. From a literature review, relationships with eight knowledge management variables covering people, process and technology aspects were hypothesised. A survey was administered to risk management employees in financial institutions. The results showed that the perceived quality of risk control is significantly associated with four knowledge management variables: perceived quality of risk knowledge sharing, perceived quality of communication among people, web channel functionality, and risk management information system functionality. However, the relationships of the knowledge management variables to the perceived value of enterprise risk management are not significant. We conclude that better knowledge management is associated with better risk control, but that more effort needs to be made to break down organizational silos in order to support true Enterprise Risk Management.
Resumo:
Risk management and knowledge management have so far been studied almost independently. The evolution of risk management to the holistic view of Enterprise Risk Management requires the destruction of barriers between organizational silos and the exchange and application of knowledge from different risk management areas. However, knowledge management has received little or no attention in risk management. This paper examines possible relationships between knowledge management constructs related to knowledge sharing, and two risk management concepts: perceived quality of risk control and perceived value of enterprise risk management. From a literature review, relationships with eight knowledge management variables covering people, process and technology aspects were hypothesised. A survey was administered to risk management employees in financial institutions. The results showed that the perceived quality of risk control is significantly associated with four knowledge management variables: perceived quality of risk knowledge sharing, perceived quality of communication among people, web channel functionality, and risk management information system functionality. However, the relationships of the knowledge management variables to the perceived value of enterprise risk management are not significant. We conclude that better knowledge management is associated with better risk control, but that more effort needs to be made to break down organizational silos in order to support true Enterprise Risk Management.
Resumo:
A tanulmány azt vizsgálja, milyen befolyással van a szervezetek kockázati attitűdje az általuk kötött szerződésre, elsősorban a projektszintű kockázatok megosztására. Esettanulmányként egy PPP-projekt szerződését használja fel, amely jól szemlélteti, hogy az eltérő kockázati magatartású szervezetek egymás közötti kockázatallokációja eltér az optimálistól. A konkrét esetben a közösségi aktor kerül kockázati aspektusból hátrányos helyzetbe. A vizsgálat eredménye, hogy meghatároz néhány kulcsparamétert, melyek a felek kockázati szempontból nyertes vagy vesztes pozícióját döntő módon befolyásolják. ___________ This paper examines the influence of the risk attitude of organizations on the contracts made by them, especially on allocation of the project level risk. A PPP project contract is used as a case study, because it illustrates expressively that the risk allocation between the concerned organiza tions with different risk attitudes differs from the optimal version. In this very case the public actor's position becomes disadvantageous. Specification some of the key parameters able to determine the winner or loser position of the risk taken parties is defined as the outcome of this study.
Resumo:
Safety-compromising accidents occur regularly in the led outdoor activity domain. Formal accident analysis is an accepted means of understanding such events and improving safety. Despite this, there remains no universally accepted framework for collecting and analysing accident data in the led outdoor activity domain. This article presents an application of Rasmussen's risk management framework to the analysis of the Lyme Bay sea canoeing incident. This involved the development of an Accimap, the outputs of which were used to evaluate seven predictions made by the framework. The Accimap output was also compared to an analysis using an existing model from the led outdoor activity domain. In conclusion, the Accimap output was found to be more comprehensive and supported all seven of the risk management framework's predictions, suggesting that it shows promise as a theoretically underpinned approach for analysing, and learning from, accidents in the led outdoor activity domain.
Resumo:
The safety risk management process describes the systematic application of management policies, procedures and practices to the activities of communicating, consulting, establishing the context, and identifying, analysing, evaluating, treating, monitoring and reviewing risk. This process is undertaken to provide assurances that the risks of a particular unmanned aircraft system activity have been managed to an acceptable level. The safety risk management process and its outcomes form part of the documented safety case necessary to obtain approvals for unmanned aircraft system operations. It also guides the development of an organisation’s operations manual and is a primary component of an organisation’s safety management system. The aim of this chapter is to provide existing risk practitioners with a high level introduction to some of the unique issues and challenges in the application of the safety risk management process to unmanned aircraft systems. The scope is limited to safety risks associated with the operation of unmanned aircraft in the civil airspace system and over inhabited areas. The structure of the chapter is based on the safety risk management process as defined by the international risk management standard ISO 31000:2009 and draws on aviation safety resources provided by International Civil Aviation Organization, the Federal Aviation Administration and U.S. Department of Defense. References to relevant aviation safety regulations, programs of research and fielded systems are also provided.
Resumo:
Background On-site wastewater treatment system (OWTS) siting, design and management has traditionally been based on site specific conditions with little regard to the surrounding environment or the cumulative effect of other systems in the environment. The general approach has been to apply the same framework of standards and regulations to all sites equally, regardless of the sensitivity, or lack thereof, to the receiving environment. Consequently, this has led to the continuing poor performance and failure of on-site systems, resulting in environmental and public health consequences. As a result, there is increasing realisation that more scientifically robust evaluations in regard to site assessment and the underlying ground conditions are needed. Risk-based approaches to on-site system siting, design and management are considered the most appropriate means of improvement to the current standards and codes for on-site wastewater treatment systems. The Project Research in relation to this project was undertaken within the Gold Coast City Council region, the major focus being the semi-urban, rural residential and hinterland areas of the city that are not serviced by centralised treatment systems. The Gold Coast has over 15,000 on-site systems in use, with approximately 66% being common septic tank-subsurface dispersal systems. A recent study evaluating the performance of these systems within the Gold Coast area showed approximately 90% were not meeting the specified guidelines for effluent treatment and dispersal. The main focus of this research was to incorporate strong scientific knowledge into an integrated risk assessment process to allow suitable management practices to be set in place to mitigate the inherent risks. To achieve this, research was undertaken focusing on three main aspects involved with the performance and management of OWTS. Firstly, an investigation into the suitability of soil for providing appropriate effluent renovation was conducted. This involved detailed soil investigations, laboratory analysis and the use of multivariate statistical methods for analysing soil information. The outcomes of these investigations were developed into a framework for assessing soil suitability for effluent renovation. This formed the basis for the assessment of OWTS siting and design risks employed in the developed risk framework. Secondly, an assessment of the environmental and public health risks was performed specifically related the release of contaminants from OWTS. This involved detailed groundwater and surface water sampling and analysis to assess the current and potential risks of contamination throughout the Gold Coast region. Additionally, the assessment of public health risk incorporated the use of bacterial source tracking methods to identify the different sources of fecal contamination within monitored regions. Antibiotic resistance pattern analysis was utilised to determine the extent of human faecal contamination, with the outcomes utilised for providing a more indicative public health assessment. Finally, the outcomes of both the soil suitability assessment and ground and surface water monitoring was utilised for the development of the integrated risk framework. The research outcomes achieved through this project enabled the primary research aims and objects to be accomplished. This in turn would enable Gold Coast City Council to provide more appropriate assessment and management guidelines based on robust scientific knowledge which will ultimately ensure that the potential environmental and public health impacts resulting from on-site wastewater treatment is minimised. As part of the implementation of suitable management strategies, a critical point monitoring program (CPM) was formulated. This entailed the identification of the key critical parameters that contribute to the characterised risks at monitored locations within the study area. The CPM will allow more direct procedures to be implemented, targeting the specific hazards at sensitive areas throughout Gold Coast region.
Resumo:
This paper discusses a model of the civil aviation reg- ulation framework and shows how the current assess- ment of reliability and risk for piloted aircraft has limited applicability for Unmanned Aircraft Systems (UAS) with high levels of autonomous decision mak- ing. Then, a new framework for risk management of robust autonomy is proposed, which arises from combining quantified measures of risk with normative decision making. The term Robust Autonomy de- scribes the ability of an autonomous system to either continue or abort its operation whilst not breaching a minimum level of acceptable safety in the presence of anomalous conditions. The decision making associ- ated with risk management requires quantifying prob- abilities associated with the measures of risk and also consequences of outcomes related to the behaviour of autonomy. The probabilities are computed from an assessment under both nominal and anomalous sce- narios described by faults, which can be associated with the aircraft’s actuators, sensors, communication link, changes in dynamics, and the presence of other aircraft in the operational space. The consequences of outcomes are characterised by a loss function which rewards the certification decision
Resumo:
This paper examines whether managers strategically time their earnings forecasts (MEFs) as litigation risk increases. We find as litigation risk increases, the propensity to release a delayed forecast until after the market is closed (AMC) or a Friday decreases but not proportionally more for bad news than for good news. Host costly this behaviour is to investors is questionable as share price returns do not reveal any under-reaction to strategically timed bad news MEF released AMC. We also find evidence consistent with managers timing their MEFs during a natural no-trading period to better disseminate information.
Level of contribution of intrinsic risk factors to the management of patients with plantar heel pain
Resumo:
Introduction: Injuries in the lower extremity are considered to have multifactorial causes, whilst people with heel pain represent the most frequent cause of visits to health professionals. Managing these patients can be very difficult. The purpose of this research is to identify key variables which can influence foot health in patients with heel pain. Materials and method: A cross-sectional observational study was carried out with a sample of sixty-two participants recruited from the Educational Welfare Unit of the University of Malaga. The therapists, blinded for the study, fill in the data with anthropometric information and the FPI, while participants fill in the foot health status questionnaire, FHSQ. The most significant results reveal that there is a moderate relation between the clinical variables and the FHSQ commands. The most significant contribution is the BMI in the foot health status questionnaire. Conclusion: The variables which can help manage clinical subjects with heel pain are age, BMI, footwear and FPI (left foot).
Resumo:
Uncertainty plays an important role in water quality management problems. The major sources of uncertainty in a water quality management problem are the random nature of hydrologic variables and imprecision (fuzziness) associated with goals of the dischargers and pollution control agencies (PCA). Many Waste Load Allocation (WLA)problems are solved by considering these two sources of uncertainty. Apart from randomness and fuzziness, missing data in the time series of a hydrologic variable may result in additional uncertainty due to partial ignorance. These uncertainties render the input parameters as imprecise parameters in water quality decision making. In this paper an Imprecise Fuzzy Waste Load Allocation Model (IFWLAM) is developed for water quality management of a river system subject to uncertainty arising from partial ignorance. In a WLA problem, both randomness and imprecision can be addressed simultaneously by fuzzy risk of low water quality. A methodology is developed for the computation of imprecise fuzzy risk of low water quality, when the parameters are characterized by uncertainty due to partial ignorance. A Monte-Carlo simulation is performed to evaluate the imprecise fuzzy risk of low water quality by considering the input variables as imprecise. Fuzzy multiobjective optimization is used to formulate the multiobjective model. The model developed is based on a fuzzy multiobjective optimization problem with max-min as the operator. This usually does not result in a unique solution but gives multiple solutions. Two optimization models are developed to capture all the decision alternatives or multiple solutions. The objective of the two optimization models is to obtain a range of fractional removal levels for the dischargers, such that the resultant fuzzy risk will be within acceptable limits. Specification of a range for fractional removal levels enhances flexibility in decision making. The methodology is demonstrated with a case study of the Tunga-Bhadra river system in India.