997 resultados para Maillard Reaction
Resumo:
The human colonic microbiota imparts metabolic versatility on the colon, interacts at many levels in healthy intestinal and systemic metabolism, and plays protective roles in chronic disease and acute infection. Colonic bacterial metabolism is largely dependant on dietary residues from the upper gut. Carbohydrates, resistant to digestion, drive colonic bacterial fermentation and the resulting end products are considered beneficial. Many colonic species ferment proteins but the end products are not always beneficial and include toxic compounds, such as amines and phenols. Most components of a typical Western diet are heat processed. The Maillard reaction, involving food protein and sugar, is a complex network of reactions occurring during thermal processing. The resultant modified protein resists digestion in the small intestine but is available for colonic bacterial fermentation. Little is known about the fate of the modified protein but some Maillard reaction products (MRP) are biologically active by, e.g. altering bacterial population levels within the colon or, upon absorption, interacting with human disease mechanisms by induction of inflammatory responses. This review presents current understanding of the interactions between MRP and intestinal bacteria. Recent scientific advances offering the possibility of elucidating the consequences of microbe-MRP interactions within the gut are discussed.
Resumo:
Proteomic tools-in particular, mass spectrometry (MS)-have advanced significantly in recent years, and the identification of proteins within complex mixtures is now a routine procedure. Quantitative methods of analysis are less well advanced and continue to develop. These include the use of stable isotope ratio approaches, isotopically labeled peptide standards, and nonlabeling methods. This paper summarizes the use of MS as a proteomics tool to identify and semiquantify proteins and their modified forms by using examples of relevance to the Maillard reaction. Finally, some challenges for the future are presented.
Resumo:
Reports of the presence of acrylamide in a range of fried and oven-cooked foods have caused worldwide concern because this compound has been classified as probably carcinogenic in humans. Here we show how acrylamide can be generated from food components during heat treatment as a result of the Maillard reaction between amino acids and reducing sugars. We find that asparagine, a major amino acid in potatoes and cereals, is a crucial participant in the production of acrylamide by this pathway.
An in vitro assessment of the fate of Maillard reaction products in the human gastrointestinal tract
Resumo:
A simple laboratory experiment, based on the Maillard reaction, served as a project in Introductory Statistics for undergraduates in Food Science and Technology. By using the principles of randomization and replication and reflecting on the sources of variation in the experimental data, students reinforced the statistical concepts and techniques introduced to them in lectures before the experiment. The experiment was run simultaneously by several student groups, using the same materials. Comparing the results of their analyses of variance, students became aware of the difference between P values and significance levels in making statistical decisions. In the experiment, the complete randomized design was applied; however, it is easy to adjust the experiment to teach students simple regression and randomized block designs.
Resumo:
The presence of amino groups and carbonyls renders fortified milk with ascorbic acid particularly susceptible to the reduction of available lysine and to the formation of Maillard reaction products (MRPs), as Nε-(Carboxyethyl)-L-lysine (CEL), Nε-(Carboxymethyl)-L-lysine (CML), Amadori products (APs) and off-flavors. A novel approach was proposed to control the Maillard reaction (MR) in fortified milk: ascorbic acid was encapsulated in a lipid coating and the effects were tested after a lab scale UHT treatment. Encapsulation promoted a delayed release of ascorbic acid and a reduction in the formation of MRPs. Total lysine increased up to 45% in milk with encapsulated ascorbic acid, while reductions in CML, CEL and furosine ranged from 10% to 53% compared with control samples. The effects were also investigated towards the formation of amide-AGEs (advanced glycation end products) by high resolution mass spectrometry (HRMS) revealing that several mechanisms coincide with the MR in the presence of ascorbic acid (AA).
Resumo:
Thermal treatments and storage influence milk quality, particularly in low lactose milk as the higher concentration of reducing sugars can lead to the increased formation of the Maillard reaction products (MRPs). The control of the Amadori products (APs) formation is the key step to mitigate the Maillard reaction (MR) in milk. The use of fructosamine oxidases, (Faox) provided promising results. In this paper, the effects of Faox I were evaluated by monitoring the concentration of free and bound MRPs in low lactose milk during shelf life. Results showed that the enzyme reduced the formation of protein-bound MRPs down to 79% after six days at 37 °C. Faox I lowered the glycation of almost all the free amino acids resulting effective on basic and polar amino acids. Data here reported corroborate previous findings on the potentiality of Faox enzymes in controlling the early stage of the MR in foods.
Resumo:
In commerce, great importance is given to the color of the dry prawn pulp in its quality evaluation. The possible correlation between this color factor to the iced or not iced condition of the raw prawn used, is investigated. The study reveals that as the icing period of the raw material increases the color of the finished product proportionately intensifies to a bright red compared to light brownish yellow or orange color of the product from the not iced prawn, and at the same time the other characteristics like flavor and taste deteriorates as the time of icing advances. This finding tends to show that the color factor does not reflect the true quality of prawn pulp. Based on chemical data it is suggested that "browning" due to Maillard reaction may have an important role in this color phenomena.
Resumo:
Four different methods were used to process fresh ginseng into red ginseng in this paper. The contents of AFG in these red ginseng were determined by ESI-MS. The results show that the indirect steaming method plays an important role in increasing the AFG content, while soakage in vinegar alone has no effect on it.
Resumo:
After thermal treatment of a mixture of glucose and glycine for 2 h at 125 degreesC, about 60% of the starting material was converted into nonsoluble, black pigments, whereas 40% of the mixture was still water-soluble. Dialysis of the latter fraction revealed 30.4% of low molecular weight compounds (LMWs; MW <10 000 De) and 10.0% high-molecular weight products [HMWs; MW greater than or equal to 10000 Dal. The water-soluble Maillard reaction products (MRPs) were separated by gel permeation chromatography and ultrafiltration, revealing that 60% of the water-soluble products of the total carbohydrate/amino acid mixture had MWs <1 000 Da and consisted mainly of non-coloured reaction products. MRPs with MWs between 1000 and 30000 Da were Found in comparatively low yields (about 1.3%). In contrast, about 31.1% of the MRPs exhibited MWs > 30000 Da, amongst which 14.5% showed MWs > 100000 Da, thus indicating an oligomerisation of LMWs to melanoidins under roasting conditions. To investigate the physiological effects of these MRPs, xenobiotic enzyme activities were analysed in intestinal Caco-2 cells. For Phase-I NADPH-cytochrome c-reductase, the activity in the presence of the LMW and HMW fraction was decreased by 13% and 22%: respectively. Phase-II glutathione-S-transferase activity decreased by 15% and 18%, respectively, after incubation with the LMW and the HMW fractions. Considering the different yields, 30% and 10%, respectively, of the LMW and the HMW fractions, the total amount of the LMW fraction present in the glucose-glycine mixture is more active in modulating three enzyme activities than that of the HMW fraction.