999 resultados para Magnetic susceptibility measurements


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fe{HB(CHN)} is observed by variable temperature infrared and magnetic studies to have a spin transition between the low spin S = 0 and high spin S = 2 states at 331 K (58 °C) with thermal hysteresis of ~1.5 K. Changes in the triazole ligand IR absorptions demonstrate that distant non-metal-ligand vibrations are altered upon the change in electronic structure associated with the spin-crossover can be used to monitor the the spin-crossover transition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-pressure magnetic susceptibility measurements have been carried out on Fe(dipy)2(NCS)2 and Fe(phen)2(NCS)2 in the pressure range 1–10 kbar and tempeature range 80–300 K in order to investigate the factors responsible for the spin-state transitions. The transitions change from first order to second or higher order upon application of pressure. The temperature variation of the susceptibility at different pressures has been analysed quantitatively within the framework of available models. It is shown that the relative magnitudes of the ΔG0 of high-spin and low-spin conversion and the ferromagnetic interaction between high-spin complexes determines the nature of the transition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Whole-core magnetic susceptibility measurements define a detailed stratigraphy that enables correlation between the various Pleistocene, Pliocene, and upper Miocene sections cored on ODP Leg 110, near the Tiburon Rise. The magnetic susceptibility in these sections is primarily related to the content of volcanic ash, rich in titanomagnetite, and also inversely related to calcium carbonate content. The high resolution of the susceptibility record enables correlations with a resolution of about 0.3 m of sediment thickness, and the identification of minor faults not definable by biostratigraphic means. Reverse and normal faults identified in Hole 672A are probably a result of normal oceanic sediment dewatering and compaction processes. This work indicates some of the problems of using visible ash layers as time-stratigraphic markers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Sør Rondane Mountains (SRM) in eastern Dronning Maud Land (DML) are located in an area, where two apparent Pan-African (650-520 Ma) orogenic mobile belts appear to intersect, the East African-Antarctic Orogen and the Kuunga Orogen. Hence, a better understanding of the tectonic structure of the Sør Rondane region is an important key for unravelling the complex geodynamic evolution of the eastern DML and adjacent regions of East Antarctica during the Late Neoproterozoic/Early Palaeozoic amalgamation of Gondwana. The SRM were recently (2011-2012) aerogeophysically investigated with a 5 km flight line spacing, covering a total area of ~140,000 km². The aeromagnetic data are correlated with ground-based magnetic susceptibility measurements and geological field data and allow to project tectonic terranes and individual structures into ice-covered areas. Magnetic anomalies and basement foliation trends are collinear in areas dominated by simple shear deformation, whereas an area of large-scale refolding correlates with a subdued small-scale broken magnetic anomaly pattern. The latter area can be regarded as a distinct tectonic domain, the central Sør Rondane corridor. It magnetically separates the SRM into an eastern, a central, and a western portion. This subdivision is presumably related to late Pan-African extensional tectonics and suggests that such a tectonic regime may play a larger role than previously assumed. Voluminous late Pan-African granitoids, which are mainly undeformed, correlate with positive magnetic anomalies between +30 and +80 nT, while a strong magnetic high (+680 nT) near the granitic intrusion at Dufekfjellet is caused by a highly magnetised enigmatic body. The recently discovered prominent magnetic anomaly province of southeastern DML continues into the southern part of the Sør Rondane region, where only a few outcrops are exposed. Findings at these westernmost nunataks of the SRM indicate that the subdued magnetic anomaly pattern of this southeastern DML province is most likely caused by the predominance of metasedimentary rocks of yet unknown age.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An orbital floating time scale of the Hauterivian-Barremian transition (Early Cretaceous) is proposed using high-resolution magnetic susceptibility measurements. Orbital tuning was performed on the Río Argos section (southeast Spain), the candidate for a Global boundary Stratotype Section and Point (GSSP) for the Hauterivian-Barremian transition. Spectral analyses of MS variations, coupled with the frequency ratio method, allow the recognition of precession, obliquity and eccentricity frequency bands. Orbitally-tuned magnetic susceptibility provides minimum durations for ammonite biozones. The durations of well-constrained ammonite zones are assessed at 0.78 myr for Pseudothurmannia ohmi (Late Hauterivian) and 0.57 myr for Taveraidiscus hugii (Early Barremian). These results are consistent with previous estimates from the other reference section (Angles, southeast France) and tend to show that the Río Argos section displays a complete succession for this time interval. They differ significantly from those proposed in the Geologic Time Scale 2008 and may help to improve the next compilation. The Faraoni Oceanic Anoxic Event, a key Early Cretaceous oceanographic perturbation occurring at the P. ohmi/P. catulloi subzone boundary has a duration estimated at 0.10-0.15 myr, which is similar to previous assessments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The complex interplay between extraterrestrial events and earth-bound processes that triggered one of the greatest biological crises of the Phanerozoic requires a high resolution timescale. Detailed magnetic susceptibility measurements at the Contessa Highway and Bottaccione sections (Italy) span the Cretaceous-Paleogene boundary and reveal clear orbital signatures in the sedimentary record. Identification of precession and 405 kyr eccentricity cycles allows an estimate of 324+/-40 kyr for the duration of the Maastrichtian part of Chron C29r. We present in the same high resolution time frame sites in Spain and the North and South Atlantic and bio-horizons, biotic changes, stable isotopic excursions and the decrease in Osmium isotopes recorded in these sections. The onset of 187 Os/ 188 Os decrease coincides with the d13 C negative excursion K-PgE1, thus suggesting a first pulse in Deccan volcanism at 66.64 Ma. The K-PgE3 d13 C negative excursion is possibly the expression of a second pulse at 66.26 Ma. Late Maastrichtian d13 C negative excursions are of low intensity and span durations of one to two eccentricity cycles, whereas early Danian excursions are brief (about 30 kyr) and acute. In Biotic response to late Maastrichtian perturbations occurred with a delay of ca. 200 kyr after the beginning of K-PgE1 shortly before K-PgE3. The biotic perturbation could be thus either a delayed response to K-PgE1, or a direct response to K-PgE3, and possibly, a threshold response to the stepwise buildup of CO2 atmospheric injections. No delay is evident in response to early Danian hyperthermal events. These differences suggest that short-lived, volcanically-derived environmental perturbations were buffered within the stable late Maastrichtian oceanic realm whereas they were amplified by the more sensitive and highly disturbed early Danian oceanic ecosystem.