17 resultados para Madurai
Resumo:
The new goblin spider genus Prethopalpus is restricted to the Australasian tropics, from the lower Himalayan Mountains in Nepal and India to the Malaysian Peninsula, Indonesia, Papua New Guinea, and Australia. Prethopalpus contains those species with a swollen palpal patella, which is one to two times the size of the femur, together with a cymbium and bulb that is usually separated, although it is largely fused in four species. The type species Opopaea fosuma Burger et al. from Sumatra, and Camptoscaphiella infernalis Harvey and Edward from Western Australia are newly transferred to Prethopalpus. The genus consists of 41 species of which 39 are newly described: P. ilam Baehr (♂, ♀) from Nepal; P. khasi Baehr (♂), P. madurai Baehr (♂), P. mahanadi Baehr (♂, ♀), and P. meghalaya Baehr (♂, ♀) from India; P. bali Baehr (♂), P. bellicosus Baehr and Thoma (♂, ♀), P. brunei Baehr (♂, ♀), P. deelemanae Baehr and Thoma (♂), P. java Baehr (♂, ♀), P. kranzae Baehr (♂), P. kropfi Baehr (♂, ♀), P. leuser Baehr (♂, ♀), P. magnocularis Baehr and Thoma (♂), P. pahang Baehr (♂), P. perak Baehr (♂, ♀), P. sabah Baehr (♂, ♀), P. sarawak Baehr (♂), P. schwendingeri Baehr (♂, ♀), and P. utara Baehr (♂, ♀) from Indonesia and Malaysia; and P. alexanderi Baehr and Harvey (♂), P. attenboroughi Baehr and Harvey (♂), P. blosfeldsorum Baehr and Harvey (♂), P. boltoni Baehr and Harvey (♂, ♀), P. callani Baehr and Harvey (♂, ♀), P. cooperi Baehr and Harvey (♂), P. eberhardi Baehr and Harvey (♂, ♀), P. framenaui Baehr and Harvey (♂, ♀), P. humphreysi Baehr and Harvey (♂, ♀), P. kintyre Baehr and Harvey (♂), P. scanloni Baehr and Harvey (♂), P. pearsoni Baehr and Harvey (♂), P. julianneae Baehr and Harvey (♂), P. maini Baehr and Harvey (♂, ♀), P. marionae Baehr and Harvey (♂, ♀), P. platnicki Baehr and Harvey (♂, ♀), P. oneillae Baehr and Harvey (♂), P. rawlinsoni Baehr and Harvey (♂), and P. tropicus Baehr and Harvey (♂, ♀) from Australia and Papua New Guinea. Three separate keys to species from different geographical regions are provided. Most species are recorded from single locations and only three species are more widely distributed. A significant radiation of blind troglobites comprising 14 species living in subterranean ecosystems in Western Australia is discussed. These include several species that lack abdominal scuta, a feature previously used to define subfamilies of Oonopidae.
Resumo:
OBJECTIVE: To determine whether algorithms developed for the World Wide Web can be applied to the biomedical literature in order to identify articles that are important as well as relevant. DESIGN AND MEASUREMENTS A direct comparison of eight algorithms: simple PubMed queries, clinical queries (sensitive and specific versions), vector cosine comparison, citation count, journal impact factor, PageRank, and machine learning based on polynomial support vector machines. The objective was to prioritize important articles, defined as being included in a pre-existing bibliography of important literature in surgical oncology. RESULTS Citation-based algorithms were more effective than noncitation-based algorithms at identifying important articles. The most effective strategies were simple citation count and PageRank, which on average identified over six important articles in the first 100 results compared to 0.85 for the best noncitation-based algorithm (p < 0.001). The authors saw similar differences between citation-based and noncitation-based algorithms at 10, 20, 50, 200, 500, and 1,000 results (p < 0.001). Citation lag affects performance of PageRank more than simple citation count. However, in spite of citation lag, citation-based algorithms remain more effective than noncitation-based algorithms. CONCLUSION Algorithms that have proved successful on the World Wide Web can be applied to biomedical information retrieval. Citation-based algorithms can help identify important articles within large sets of relevant results. Further studies are needed to determine whether citation-based algorithms can effectively meet actual user information needs.