938 resultados para MUSHROOM BODIES


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The central point of this work is the investigation of neurogenesis in chelicerates and myriapods. By comparing decisive mechanisms in neurogenesis in the four arthropod groups (Chelicerata, Crustacea, Insecta, Myriapoda) I was able to show which of these mechanisms are conserved and which developmental modules have diverged. Thereby two processes of embryonic development of the central nervous system were brought into focus. On the one hand I studied early neurogenesis in the ventral nerve cord of the spiders Cupiennius salei and Achaearanea tepidariorum and the millipede Glomeris marginata and on the other hand the development of the brain in Cupiennius salei.rnWhile the nervous system of insects and crustaceans is formed by the progeny of single neural stem cells (neuroblasts), in chelicerates and myriapods whole groups of cells adopt the neural cell fate and give rise to the ventral nerve cord after their invagination. The detailed comparison of the positions and the number of the neural precursor groups within the neuromeres in chelicerates and myriapods showed that the pattern is almost identical which suggests that the neural precursors groups in these arthropod groups are homologous. This pattern is also very similar to the neuroblast pattern in insects. This raises the question if the mechanisms that confer regional identity to the neural precursors is conserved in arthropods although the mode of neural precursor formation is different. The analysis of the functions and expression patterns of genes which are known to be involved in this mechanism in Drosophila melanogaster showed that neural patterning is highly conserved in arthropods. But I also discovered differences in early neurogenesis which reflect modifications and adaptations in the development of the nervous systems in the different arthropod groups.rnThe embryonic development of the brain in chelicerates which was investigated for the first time in this work shows similarities but also some modifications to insects. In vertebrates and arthropods the adult brain is composed of distinct centres with different functions. Investigating how these centres, which are organised in smaller compartments, develop during embryogenesis was part of this work. By tracing the morphogenetic movements and analysing marker gene expressions I could show the formation of the visual brain centres from the single-layered precheliceral neuroectoderm. The optic ganglia, the mushroom bodies and the arcuate body (central body) are formed by large invaginations in the peripheral precheliceral neuroectoderm. This epithelium itself contains neural precursor groups which are assigned to the respective centres and thereby build the three-dimensional optical centres. The single neural precursor groups are distinguishable during this process leading to the assumption that they carry positional information which might subdivide the individual brain centres into smaller functional compartments.rn

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In der vorliegenden Dissertation wird ein Körpergrößengedächtnis untersucht. Es wird dargestellt, wie diese Information über die Reichweite der Fliege beim Lückenklettern unter kotrollierten Umweltbedingungen erworben und prozessiert wird. Zusätzlich wird geklärt, welche biochemischen Signale benötigt werden, um daraus ein lang anhalten-des Gedächtnis zu formen. Adulte Fliegen sind in der Lage, ihre Körperreichweite zu lernen. Naive Fliegen, die in der Dunkelheit gehalten wurden, versuchen erfolglos, zu breite Lücken zu überqueren, während visuell erfahrene Fliegen die Kletterversuche an ihre Körpergröße anpassen. Erfahrene kleine Fliegen scheinen Kenntnis ihres Nachteils zu haben. Sie kehren an Lückenbreiten um, welche ihre größeren Artgenos-sen durchaus noch versuchen. Die Taufliegen lernen die größenabhängige Reichweite über die visuelle Rückmeldung während des Laufens (aus Parallaxenbewegung). Da-bei reichen 15 min in strukturierter, heller Umgebung aus. Es gibt keinen festgelegten Beginn der sensiblen Phase. Nach 2 h ist das Gedächtnis jedoch konsolidiert und kann durch Stress nicht mehr zerstört oder durch sensorische Eingänge verändert werden. Dunkel aufgezogene Fliegen wurden ausgewählten Streifenmustern mit spezifischen Raumfrequenzen ausgesetzt. Nur die Insekten, welche mit einem als „optimal“ klassi-fizierten Muster visuell stimuliert wurden, sind in der Lage, die Körperreichweite einzu-schätzen, indem die durchschnittliche Schrittlänge in Verbindung mit der visuellen Wahrnehmung gebracht wird. Überraschenderweise ist es sogar mittels partieller Kompensation der Parallaxen möglich, naive Fliegen so zu trainieren, dass sie sich wie kleinere Exemplare verhalten. Da die Experimente ein Erlernen der Körperreich-weite vermuten lassen, wurden lernmutante Stämme beim Lückenüberwinden getes-tet. Sowohl die Ergebnisse von rut1- und dnc1-Mutanten, als auch das defizitäre Klet-tern von oc1-Fliegen ließ eine Beteiligung der cAMP-abhängigen Lernkaskade in der Protocerebralbrücke (PB) vermuten. Rettungsexperimente der rut1- und dnc1-Hinter-gründe kartierten das Gedächtnis in unterschiedliche Neuronengruppen der PB, wel-che auch für die visuelle Ausrichtung des Kletterns benötigt werden. Erstaunlicher-weise haben laterale lokale PB-Neurone und PFN-Neurone (Projektion von der PB über den fächerförmigen Körper zu den Noduli) verschiedene Erfordernisse für cAMP-Signale. Zusammenfassend weisen die Ergebnisse darauf hin, dass hohe Mengen an cAMP/PKA-Signalen in den latero-lateralen Elementen der PB benötigt werden, wäh-rend kolumnäre PFN-Neurone geringe oder keine Mengen an cAMP/PKA erfordern. Das Körperreichweitengedächtnis ist vermutlich das am längsten andauernde Ge-dächtnis in Drosophila. Wenn es erst einmal konsolidiert ist hält es länger als drei Wo-chen.rnAußerdem kann die Fruchtliege Drosophila melanogaster trainiert werden, die kom-plexe motorische Aufgabe des Lückenkletterns zu optimieren. Die trainierten Fliegen werden erfolgreicher und schneller beim Überqueren von Lücken, welche größer sind als sie selbst. Dabei existiert eine Kurzeitkomponente (STM), die 40 min nach dem ersten Training anhält. Nach weiteren vier Trainingsdurchläufen im Abstand von 20 min wird ein Langzeitgedächtnis (LTM) zum Folgetag geformt. Analysen mit Mutati-onslinien wiesen eine Beteiligung der cAMP-abhängigen Lernkaskade an dieser Ge-dächtnisform auf. Rettungsexperimente des rut2080-Hintergrunds kartierten sowohl das STM, als auch das LTM in PFN-Neuronen. Das STM kann aber ebenso in den alpha- und beta- Loben der Pilzkörper gerettet werden.rnLetztendlich sind wildtypische Fliegen sogar in der Lage, sich an einen Verlust eines Mittelbeintarsuses und dem einhergehenden Fehlen des Adhäsionsorgans am Tarsusende anzupassen. Das Klettern wird zwar sofort schlechter, erholt sich aber bis zum Folgetag wieder auf ein normales Niveau. Dieser neue Zustand erfordert ein Ge-dächtnis für die physischen Möglichkeiten, die nur durch plastische Veränderungen im Nervensystem des Insekts erreicht werden können.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An often-overlooked aspect of neural plasticity is the plasticity of neuronal composition, in which the numbers of neurons of particular classes are altered in response to environment and experience. The Drosophila brain features several well-characterized lineages in which a single neuroblast gives rise to multiple neuronal classes in a stereotyped sequence during development. We find that in the intrinsic mushroom body neuron lineage, the numbers for each class are highly plastic, depending on the timing of temporal fate transitions and the rate of neuroblast proliferation. For example, mushroom body neuroblast cycling can continue under starvation conditions, uncoupled from temporal fate transitions that depend on extrinsic cues reflecting organismal growth and development. In contrast, the proliferation rates of antennal lobe lineages are closely associated with organismal development, and their temporal fate changes appear to be cell-cycle dependent, such that the same numbers and types of uniglomerular projection neurons innervate the antennal lobe following various perturbations. We propose that this surprising difference in plasticity for these brain lineages is adaptive, given their respective roles as parallel processors versus discrete carriers of olfactory information.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Optical Projection Tomography (OPT) is a microscopic technique that generates three dimensional images from whole mount samples the size of which exceeds the maximum focal depth of confocal laser scanning microscopes. As an advancement of conventional emission-OPT, Scanning Laser Optical Tomography (SLOTy) allows simultaneous detection of fluorescence and absorbance with high sensitivity. In the present study, we employ SLOTy in a paradigm of brain plasticity in an insect model system. Methodology: We visualize and quantify volumetric changes in sensory information procession centers in the adult locust, Locusta migratoria. Olfactory receptor neurons, which project from the antenna into the brain, are axotomized by crushing the antennal nerve or ablating the entire antenna. We follow the resulting degeneration and regeneration in the olfactory centers (antennal lobes and mushroom bodies) by measuring their size in reconstructed SLOTy images with respect to the untreated control side. Within three weeks post treatment antennal lobes with ablated antennae lose as much as 60% of their initial volume. In contrast, antennal lobes with crushed antennal nerves initially shrink as well, but regain size back to normal within three weeks. The combined application of transmission-and fluorescence projections of Neurobiotin labeled axotomized fibers confirms that recovery of normal size is restored by regenerated afferents. Remarkably, SLOTy images reveal that degeneration of olfactory receptor axons has a trans-synaptic effect on second order brain centers and leads to size reduction of the mushroom body calyx. Conclusions: This study demonstrates that SLOTy is a suitable method for rapid screening of volumetric plasticity in insect brains and suggests its application also to vertebrate preparations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Opsins are light-sensitive proteins that play a key role in animal vision and are related to the ancient photoreceptive molecule rhodopsin found in unicellular organisms. In general, opsins involved in vision comprise two major groups: the rhabdomeric (r-opsins) and the ciliary opsins (c-opsins). The functionality of opsins, which is dependent on their protein structure, may have changed during evolution. In arthropods, typically r-opsins are responsible for vision, whereas in vertebrates c-opsins are components of visual photoreceptors. Recently, an enigmatic r-opsin-like protein called arthropsin has been identified in various bilaterian taxa, including arthropods, lophotrochozoans, and chordates, by performing transcriptomic and genomic analyses. Since the role of arthropsin and its distribution within the body are unknown, we immunolocalized this protein in a representative of Onychophora – Euperipatoides rowelli – an ecdysozoan taxon which is regarded as one of the closest relatives of Arthropoda. Our data show that arthropsin is expressed in the central nervous system of E. rowelli, including the brain and the ventral nerve cords, but not in the eyes. These findings are consistent with previous results based on reverse transcription PCR in a closely related onychophoran species and suggest that arthropsin is a non-visual protein. Based on its distribution in the central brain region and the mushroom bodies, we speculate that the onychophoran arthropsin might be either a photosensitive molecule playing a role in the circadian clock, or a non-photosensitive protein involved in olfactory pathways, or both.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this work was to evaluate yield and chemical composition of oyster mushroom strains newly introduced in Bangladesh. Strains of Pleurotus high‑king (strain PHK), P. ostreatus (strain PO2), and P. geesteranus (strains PG1 and PG3) were evaluated as to yield components and proximate composition. Pleurotus ostreatus was used as control. Pleurotus high‑king showed fastest growth of primordia, but moderate flush of effective fruiting bodies. Pleurotus geesteranus (PG1) showed higher economic yield and biological performance, and better chemical composition, especially in terms of protein and mineral contents. Pleurotus geesteranus (PG1) shows better performance than P. ostreatus (PO2), the most commercially cultivated edible species in Bangladesh, and, therefore, it should be recommended for commercial cultivation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pleurotus ostreatus, worldwide known as oyster mushroom, was cultivated in banana straw using inocula produced by two different processes - liquid inoculum and the traditionally used solid inoculum. Different ratios (5, 10, 15, and 20%) were tested. Biological efficiency, yield, productivity, organic matter loss, and moisture of fruiting bodies as well as physical-chemical characteristics of banana straw were studied. Significant differences were observed for cellulose, lignin, and hemicellulose content between one and two harvests for both solid and liquid inocula. It was observed that P. ostreatus growth promoted higher degradation of lignin (80.36%), followed by hemicellulose (78.64%) and cellulose (60.37%). Significant differences between one and two harvests were also observed for the production parameters (biological efficiency and yield) for both kinds of inocula, liquid and solid. However, significant differences in productivity between harvests were observed only for solid inoculum.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Peripheral nerves have the unique capability to regenerate after injury. Insights into regeneration of peripheral nerves after injury may have implications for neurodegenerative diseases of the nervous system. We investigated the ability of polysaccharide from Hericium erinaceus mushroom in the treatment of nerve injury following peroneal nerve crush in Sprague-Dawley rats by daily oral administration. In sensory functional recovery test, the time taken for the rats to withdraw its hind limb from contact with the hot plate was measured. The test revealed acceleration of sensory recovery in the polysaccharide group compared to negative controls. Further, peripheral nerve injury leads to changes at the remotely located DRG containing cell bodies of sensory neurons. Immunofluorescence studies showed that Akt and p38 MAPK were expressed in DRG and strongly upregulated in polysaccharide group after peripheral nerve injury. The intensity of endothelial cells antigen-1 that recognized endothelial cells in the blood vessels of distal segments in crushed nerves was significantly higher in the treated groups than in the negative control group. Our findings suggest that H. erinaceus is capable of accelerating sensory functional recovery after peripheral nerve injury and the effect involves the activation of protein kinase signaling pathways and restoration of blood-nerve barrier.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of the study was to determine the nutritional and chemical composition (carbohydrates, proteins, lipids, calcium, and iron), water and ash content, and the caloric value of powdered fruiting bodies from six strains and from a mixture of strains of the culinary-medicinal mushroom Agaricus brasiliensis. The Kruskal-Wallis nonparametric and multiple comparisons tests and the Pearson correlation coefficient were used, with a 5% significance level. First, the results showed that strain 99/30 had a similar nutritional composition to the mixed sample. Second, when comparing strain nutrients to the mixture nutrients, the highest levels of carbohydrates, proteins, and calcium were in strain 99/25, and the highest levels of lipids were in strains 97/11, 99/28, and 99/30. Strain 99/30 was highest both in caloric value and moisture content. Finally, the mixture was established as a good source of macronutrients and micronutrients, and strain 99/30 was the closest to the mixture in nutritional composition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a culture of a Pleurotus ostreatus (oyster mushroom) strain, macro and micronutrients of the raw material and the initial and spent substrates were evaluated. Substrates were formulated with sawdust from Simarouba amara Aubl. and Ochroma piramidale Cav. ex. Lam., crushed Bactris gasipaes Kunth and crushed Saccharum officinarum (sugar cane). Samples were solubilized by means of acid digestion (nitric-peridrol). Ca, Mg, Fe, Cu, Zn and Mn were determined by atomic absorption spectrophotometry, Na and K by atomic emission, and P by colorimetry. The mineral composition of the fruiting body varied with the substrates, which made possible the production of a fruiting body rich in K, P Mg and Fe. Potassium was the mineral with the highest content in the fruiting body in all substrates tested (36.83-42.18g.kg(-1)). There was an increase of protein and mineral content in the spent substrate in relation to the initial one.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aqueous extracts of the sporophores of eight mushroom species were assessed for their ability to prevent H2O2-induced oxidative damage to cellular DNA using the single-cell gel electrophoresis (Comet) assay. The highest genoprotective effects were obtained with cold (20°C) and hot (100°C) water extracts of Agaricus bisporus and Ganoderma lucidum fruit bodies, respectively. No protective effects were observed with Mushroom Derived Preparations (MDPs) from Flammulina velutipes, Auricularia auricula, Hypsizygus marmoreus, Lentinula edodes, Pleurotus sajor-caju, and Volvariella volvacea. These findings indicate that some edible mushrooms represent a valuable source of biologically active compounds with potential for protecting cellular DNA from oxidative damage. © 2002 Wiley-Liss, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Research on mushroom production and products is gaining more grounds globally and in particular Nigeria. This study was carried out to determine nutritional relationship between the substrate used for cultivation and the fruiting body on each of the substrates. Agro-wastes, namely: palm ( Elaeis guineensis ) fruit shaft, plantain ( Musa paradisiaca ) leaves, sawdust and kenaf ( Hibiscus cannabinus ) stem, were assessed for suitability as substrates for cultivation of oyster mushroom ( Pleurotus floridanus Singer ). The spawn of the mushroom was used to inoculate each of the substrates, using a complete randomised design, with five replicates for each substrate. Results showed that all the substrates supported mycelia growth and development of fruiting bodies of the fungus. There were significant differences (P<0.05) among substrates in terms of number of days to complete mycelia run, with the least recorded in palm fruit shaft (25.20), and the highest in kenaf (32.40). Total yield also differed significantly (P<0.05), with the highest in palm fruit shaft (51.4 g 100 g-1) and lowest in plantain leaves (6.0 g 100 g-1). There was also significant difference (P<0.05) in the nutritional content of fruiting bodies, the highest fat content being on plantain leaves (1.72 g 100 g-1) and the lowest on palm fruit shaft (0.55 g 100 g-1). The trend was similar for mushroom substrates, plantain leaves having (2.55 g 100 g-1) and palm fruit shaft, (0.41g 100 g-1). Starch content for fruiting bodies was highest on sawdust (5.31 g 100 g-1) and lowest on kenaf (2.66 g 100 g-1), while for mushroom substrates, kenaf was (0.33g 100 g-1) and palm fruit shaft was (4.45g 100 g-1). There was a positive correlation (r = 0.24) between the nutrient of fruiting bodies and that of the substrate on which it was cultivated.