989 resultados para MOLECULAR CHAPERONE
Resumo:
Molecular chaperones perform folding assistance in newly synthesized polypeptides preventing aggregation processes, recovering proteins from aggregates, among other important cellular functions. Thus their study presents great biotechnological importance. The present work discusses the mining for chaperone-related sequences within the sugarcane EST genome project database, which resulted in approximately 300 different sequences. Since molecular chaperones are highly conserved in most organisms studied so far, the number of sequences related to these proteins in sugarcane was very similar to the number found in the Arabidopsis thaliana genome. The Hsp70 family was the main molecular chaperone system present in the sugarcane expressome. However, many other relevant molecular chaperones systems were also present. A digital RNA blot analysis showed that 5'ESTs from all molecular chaperones were found in every sugarcane library, despite their heterogeneous expression profiles. The results presented here suggest the importance of molecular chaperones to polypeptide metabolism in sugarcane cells, based on their abundance and variability. Finally, these data have being used to guide more in deep analysis, permitting the choice of specific targets to study. (c) 2006 Elsevier GmbH. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: Peroxiredoxins have diverse functions in cellular defense-signaling pathways. 2-Cys-peroxiredoxins (2-Cys-Prx) reduce H2O2 and alkyl-hydroperoxide. This study describes the purification and characterization of a genuine 2-Cys-Prx from Vigna unguiculata (Vu-2-Cys-Prx). Methods: Vu-2-Cys-Prx was purified from leaves by ammonium sulfate fractionation, chitin affinity and ion exchange chromatography. Results: Vu-2-Cys-Prx reduces H2O2 using NADPH and DTT. Vu-2-Cys-Prx is a 44 kDa (SDS-PAGE)/46 kDa (exclusion chromatography) protein that appears as a 22 kDa molecule under reducing conditions, indicating that it is a homodimer linked intermolecularly by disulfide bonds and has a pI range of 4.56-4.72; its NH2-terminal sequence was similar to 2-Cys-Prx from Phaseolus vulgaris (96%) and Populus tricocarpa (96%). Analysis by ESI-Q-TOF MS/MS showed a molecular mass/pI of 28.622 kDa/5.18. Vu-2-Cys-Prx has 8% alpha-helix, 39% beta-sheet, 22% of turns and 31% of unordered forms. Vu-2-Cys-Prx was heat stable, has optimal activity at pH 7.0, and prevented plasmid DNA degradation. Atomic force microscopy shows that Vu-2-Cys-Prx oligomerized in decamers which might be associated with its molecular chaperone activity that prevented denaturation of insulin and citrate synthase. Its cDNA analysis showed that the redox-active Cys(52) residue and the amino acids Pro(45), Thr(49) and Arg(128) are conserved as in other 2-Cys-Prx. General significance: The biochemical and molecular features of Vu-2-Cys-Prx are similar to other members of 2-Cys-Prx family. To date, only one publication reported on the purification of native 2-Cys-Prx from leaves and the subsequent analysis by N-terminal Edman sequencing, which is crucial for construction of stromal recombinant 2-Cys-Prx proteins. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The eukaryotic stress response is an essential mechanism that helps protect cells from a variety of environmental stresses. Cell death can result if cells are not able to properly adapt and protect themselves against adverse stress conditions. Failure to properly deal with stress has implications in human diseases including neurodegenerative disorders and distinct cancers, emphasizing the importance of understanding the eukaryotic stress response in detail. As part of this response, expression of a battery of heat shock proteins (HSP) is induced, which act as molecular chaperones to assist in the repair or triage of unfolded proteins. The 90-kDa HSP (Hsp90) operates in the context of a multi-chaperone complex to promote the maturation of nuclear and cytoplasmic clients. I have discovered that Hsp90 and the co-chaperone Sba1 accumulate in the nucleus of quiescent Saccharomyces cerevisiae cells in a karyopherin-dependent manner. I isolated nuclear accumulation- defective HSP82 mutant alleles to probe the nature of this targeting event and identified a mutant with a single amino acid substitution (I578F) sufficient to prevent nuclear accumulation of Hsp90 in quiescent cells. Diploid hsp82-I578F cells exhibited pronounced defects in spore wall construction and maturation, resulting in catastrophic sporulation. The mislocalization and sporulation phenotypes were shared by another previously identified HSP82 mutant allele, further linking localization to Hsp90 functional status. Pharmacological inhibition of Hsp90 with macbecin in sporulating diploid cells also blocked spore formation, underscoring the importance of this chaperone in this developmental program. The yeast molecular chaperone Hsp104 is a member of the Hsp100 superfamily of AAA+ ATPases. Unlike the Hsp90 family of chaperones, Hsp104 is not restricted to a specific set of client proteins, but rather assists in reactivating stress-denatured proteins by solubilizing protein aggregates. I have discovered that Hsp104, along with the Hsp70 chaperone, Ssa1, and the sHSP Hsp26 accumulate into RNA processing bodies (P- bodies) and stress granules, sites of mRNA metabolism. I found that Hsp104 recruits both Ssa1 and Hsp26 to P-bodies and that these three chaperones are required for stress granule formation. These findings suggest a possible role for chaperones in mRNA metabolism by aiding in the assembly, disassembly or conversion of these enigmatic mRNP complexes. Taken together, the work presented in this dissertation serves to better understand the eukaryotic stress response by illustrating the importance of subcellular-chaperone localization in key biological processes.
Resumo:
SSE1 and SSE2 encode the essential yeast members of the Hsp70-related Hsp110 molecular chaperone family. Both mammalian Hsp110 and the Sse proteins functionally interact with cognate cytosolic Hsp70s as nucleotide exchange factors. We demonstrate here that Sse1 forms high-affinity (Kd approximately 10-8 M) heterodimeric complexes with both yeast Ssa and mammalian Hsp70 chaperones and that binding of ATP to Sse1 is required for binding to Hsp70s. Sse1.Hsp70 heterodimerization confers resistance to exogenously added protease, indicative of conformational changes in Sse1 resulting in a more compact structure. The nucleotide binding domains of both Sse1/2 and the Hsp70s dictate interaction specificity and are sufficient for mediating heterodimerization with no discernible contribution from the peptide binding domains. In support of a strongly conserved functional interaction between Hsp110 and Hsp70, Sse1 is shown to associate with and promote nucleotide exchange on human Hsp70. Nucleotide exchange activity by Sse1 is physiologically significant, as deletion of both SSE1 and the Ssa ATPase stimulatory protein YDJ1 is synthetically lethal. The Hsp110 family must therefore be considered an essential component of Hsp70 chaperone biology in the eukaryotic cell.
Resumo:
ClpA, a member of the Clp/Hsp100 family of ATPases, is a molecular chaperone and, in combination with a proteolytic component ClpP, participates in ATP-dependent proteolysis. We investigated the role of ClpA in protein degradation by ClpAP by dissociating the reaction into several discrete steps. In the assembly step, ClpA–ClpP–substrate complexes assemble either by ClpA–substrate complexes interacting with ClpP or by ClpA–ClpP complexes interacting with substrate; ClpP in the absence of ClpA is unable to bind substrates. Assembly requires ATP binding but not hydrolysis. We discovered that ClpA translocates substrates from their binding sites on ClpA to ClpP. The translocation step specifically requires ATP; nonhydrolyzable ATP analogs are ineffective. Only proteins that are degraded by ClpAP are translocated. Characterization of the degradation step showed that substrates can be degraded in a single round of ClpA–ClpP–substrate binding followed by ATP hydrolysis. The products generated are indistinguishable from steady-state products. Taken together, our results suggest that ClpA, through its interaction with both the substrate and ClpP, acts as a gatekeeper, actively translocating specific substrates into the proteolytic chamber of ClpP where degradation occurs. As multicomponent ATP-dependent proteases are widespread in nature and share structural similarities, these findings may provide a general mechanism for regulation of substrate import into the proteolytic chamber.
Resumo:
ClpA, a newly discovered ATP-dependent molecular chaperone, remodels bacteriophage P1 RepA dimers into monomers, thereby activating the latent specific DNA binding activity of RepA. We investigated the mechanism of the chaperone activity of ClpA by dissociating the reaction into several steps and determining the role of nucleotide in each step. In the presence of ATP or a nonhydrolyzable ATP analog, the initial step is the self-assembly of ClpA and its association with inactive RepA dimers. ClpA-RepA complexes form rapidly and at 0°C but are relatively unstable. The next step is the conversion of unstable ClpA-RepA complexes into stable complexes in a time- and temperature-dependent reaction. The transition to stable ClpA-RepA complexes requires binding of ATP, but not ATP hydrolysis, because nonhydrolyzable ATP analogs satisfy the nucleotide requirement. The stable complexes contain approximately 1 mol of RepA dimer per mol of ClpA hexamer and are committed to activating RepA. In the last step of the reaction, active RepA is released upon exchange of ATP with the nonhydrolyzable ATP analog and ATP hydrolysis. Importantly, we discovered that one cycle of RepA binding to ClpA followed by ATP-dependent release is sufficient to convert inactive RepA to its active form.
Resumo:
Initiation and control of replication of the broad-host-range plasmid RK2 requires two plasmid-encoded elements, the replication origin (oriV) and the initiation protein TrfA. Purified TrfA is largely in the form of a dimer; however, only the monomeric form of the protein can bind specifically to the direct repeats (iterons) at the RK2 origin. The largely dimeric form of wild-type TrfA is inactive in the initiation of replication of RK2 in an in vitro replication system reconstituted from purified components. However, preincubation of the TrfA protein with the ClpX molecular chaperone isolated from Escherichia coli activates the initiator protein for replication in the purified system. We further observed that ClpX, in an ATP-dependent reaction, greatly increases the proportion of TrfA monomers and, therefore, the ability of this protein to bind to iterons localized within RK2 origin. Finally, a copy-up mutant of the TrfA protein which is largely in the monomer form is active in the reconstituted in vitro replication system, and its activity is not affected by ClpX.
Resumo:
The chaperonin GroEL is a large complex composed of 14 identical 57-kDa subunits that requires ATP and GroES for some of its activities. We find that a monomeric polypeptide corresponding to residues 191 to 345 has the activity of the tetradecamer both in facilitating the refolding of rhodanese and cyclophilin A in the absence of ATP and in catalyzing the unfolding of native barnase. Its crystal structure, solved at 2.5 Å resolution, shows a well-ordered domain with the same fold as in intact GroEL. We have thus isolated the active site of the complex allosteric molecular chaperone, which functions as a “minichaperone.” This has mechanistic implications: the presence of a central cavity in the GroEL complex is not essential for those representative activities in vitro, and neither are the allosteric properties. The function of the allosteric behavior on the binding of GroES and ATP must be to regulate the affinity of the protein for its various substrates in vivo, where the cavity may also be required for special functions.
Resumo:
Accumulating evidence suggests that the mitochondrial molecular chaperone heat shock protein 60 (hsp60) also can localize in extramitochondrial sites. However, direct evidence that hsp60 functions as a chaperone outside of mitochondria is presently lacking. A 60-kDa protein that is present in the plasma membrane of a human leukemic CD4+ CEM-SS T cell line and is phosphorylated by protein kinase A (PKA) was identified as hsp60. An 18-kDa plasma membrane-associated protein coimmunoprecipitated with hsp60 and was identified as histone 2B (H2B). Hsp60 physically associated with H2B when both molecules were in their dephospho forms. By contrast, PKA-catalyzed phosphorylation of both hsp60 and H2B caused dissociation of H2B from hsp60 and loss of H2B from the plasma membrane of intact T cells. These results suggest that (i) hsp60 and H2B can localize in the T cell plasma membrane; (ii) hsp60 functions as a molecular chaperone for H2B; and (iii) PKA-catalyzed phosphorylation of both hsp60 and H2B appears to regulate the attachment of H2B to hsp60. We propose a model in which phosphorylation/dephosphorylation regulates chaperoning of H2B by hsp60 in the plasma membrane.
The chaperone GroEL is required for the final assembly of the molybdenum-iron protein of nitrogenase
Resumo:
It is known that an E146D site-directed variant of the Azotobacter vinelandii iron protein (Fe protein) is specifically defective in its ability to participate in iron-molybdenum cofactor (FeMoco) insertion. Molybdenum-iron protein (MoFe protein) from the strain expressing the E146D Fe protein is partially (≈45%) FeMoco deficient. The “free” FeMoco that is not inserted accumulates in the cell. We were able to insert this “free” FeMoco into the partially pure FeMoco-deficient MoFe protein. This insertion reaction required crude extract of the ΔnifHDK A. vinelandii strain CA12, Fe protein and MgATP. We used this as an assay to purify a required “insertion” protein. The purified protein was identified as GroEL, based on the molecular mass of its subunit (58.8 kDa), crossreaction with commercially available antibodies raised against E. coli GroEL, and its NH2-terminal polypeptide sequence. The NH2-terminal polypeptide sequence showed identity of up to 84% to GroEL from various organisms. Purified GroEL of A. vinelandii alone or in combination with MgATP and Fe protein did not support the FeMoco insertion into pure FeMoco-deficient MoFe protein, suggesting that there are still other proteins and/or factors missing. By using GroEL-containing extracts from a ΔnifHDK strain of A. vinelandii CA12 along with FeMoco, Fe protein, and MgATP, we were able to supply all required proteins and/or factors and obtained a fully active reconstituted E146D nifH MoFe protein. The involvement of the molecular chaperone GroEL in the insertion of a metal cluster into an apoprotein may have broad implications for the maturation of other metalloenzymes.
Resumo:
Free GroEL binds denatured proteins very tightly: it retards the folding of barnase 400-fold and catalyzes unfolding fluctuations in native barnase and its folding intermediate. GroEL undergoes an allosteric transition from its tight-binding T-state to a weaker binding R-state on the cooperative binding of nucleotides (ATP/ADP) and GroES. The preformed GroEL.GroES.nucleotide complex retards the folding of barnase by only a factor of 4, and the folding rate is much higher than the ATPase activity that releases GroES from the complex. Binding of GroES and nucleotides to a preformed GroEL.denatured-barnase complex forms an intermediately fast-folding complex. We propose the following mechanism for the molecular chaperone. Denatured proteins bind to the resting GroEL.GroES.nucleotide complex. Fast-folding proteins are ejected as native structures before ATP hydrolysis. Slow-folding proteins enter chaperoning cycles of annealing and folding after the initial ATP hydrolysis. This step causes transient release of GroES and formation of the GroEL.denatured-protein complexes with higher annealing potential. The intermediately fast-folding complex is formed on subsequent rebinding of GroES. The ATPase activity of GroEL.GroES is thus the gatekeeper that selects for initial entry of slow-folding proteins to the chaperone action and then pumps successive transitions from the faster-folding R-states to the tighter-binding/stronger annealing T-states. The molecular chaperone acts as a combination of folding cage and an annealing machine.
Resumo:
Clusterin (CLU) was initially reported as an androgen-repressed gene which is now shown to be an androgen-regulated ATP-independent cytoprotective molecular chaperone. CLU binds to a wide variety of client proteins to potently inhibit stress-induced protein aggregation and chaperone or stabilise conformations of proteins at times of cell stress. CLU is an enigmatic protein, being ascribed both pro- and anti-apoptotic roles. Recent evidence has shown that both secreted (sCLU) and nuclear (nCLU) isoforms can be produced, and that protein function is dependent on the sub-cellular localisation. We and others have shown that sCLU is cytoprotective, while nCLU is pro-apoptotic. It now seems likely that the apparently dichotomous functions of CLU result from the expression of different but related CLU isoforms and splice variants, and that cell survival depends in part on the relative expression of pro- versus anti-apoptotic CLU proteins. In cancer cells, increased sCLU expression is associated with increased resistance to apoptotic triggers and treatment resistance. CLU is a stress-induced protein upregulated after apoptotic triggers like androgen ablation and chemotherapy. Treatment strategies targeting stress-associated increases in sCLU expression enhance treatment-induced apoptosis and delay the emergence of androgen independence. Differential regulation of CLU isoforms and splice variants by androgens may be a pathway whereby cancer cells develop treatment resistance and evade apoptosis.
Resumo:
Developing novel drugs against the unicellular parasite Plasmodium is complicated by the paucity of simple screening systems. Heat-shock proteins are an essential class of proteins for the parasite's cyclical life style between different cellular milieus and temperatures. The molecular chaperone Hsp90 assists a large variety of proteins, but its supporting functions for many proteins that are important for cancer have made it into a well-studied drug target. With a better understanding of the differences between Hsp90 of the malarial parasite and Hsp90 of its human host, new therapeutic options might become available. We have generated a set of isogenic strains of the budding yeast Saccharomyces cerevisiae where the essential yeast Hsp90 proteins have been replaced with either of the two human cytosolic isoforms Hsp90 alpha or Hsp90 beta, or with Hsp90 from Plasmodium falciparum (Pf). All strains express large amounts of the Flag-tagged Hsp90 proteins and are viable. Even though the strain with Pf Hsp90 grows more poorly, it provides a tool to reconstitute additional aspects of the parasite Hsp90 complex and its interactions with substrates in yeast as a living test tube. Upon exposure of the set of Hsp90 test strains to the two Hsp90 inhibitors radicicol (Rd) and geldanamycin (GA), we found that the strain with Pf Hsp90 is relatively more sensitive to GA than to Rd compared to the strains with human Hsp90's. This indicates that this set of yeast strains could be used to screen for new Pf Hsp90 inhibitors with a wider therapeutic window.
Resumo:
Introduction Single nucleotide polymorphisms in ERAP2 are strongly associated with ankylosing spondylitis (AS). One AS-associated single nucleotide polymorphism, rs2248374, causes a truncated ERAP2 protein that is degraded by nonsense-mediated decay. Approximately 25% of the populations of European ancestry are therefore natural ERAP2 knockouts. We investigated the effect of this associated variant on HLA class I allele presentation, surface heavy chains, endoplasmic reticulum (ER) stress markers and cytokine gene transcription in AS. Methods Patients with AS and healthy controls with either AA or GG homozygous status for rs2248374 were studied. Antibodies to CD14, CD19-ECD, HLA-A-B-C, Valpha7.2, CD161, anti-HC10 and anti-HLA-B27 were used to analyse peripheral blood mononuclear cells. Expression levels of ER stress markers (GRP78 and CHOP) and proinflammatory genes (tumour necrosis factor (TNF), IL6, IL17 and IL22) were assessed by qPCR. Results There was no significant difference in HLAclass I allele presentation or major histocompatibility class I heavy chains or ER stress markers GRP78 and CHOP or proinflammatory gene expression between genotypes for rs2248374 either between cases, between cases and controls, and between controls. Discussion Large differences were not seen in HLAB27 expression or cytokine levels between subjects with and without ERAP2 in AS cases and controls. This suggests that ERAP2 is more likely to influence AS risk through other mechanisms.