933 resultados para MODULATES BAROREFLEX


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Functional connectivity (FC) analyses of resting-state fMRI data allow for the mapping of large-scale functional networks, and provide a novel means of examining the impact of dopaminergic challenge. Here, using a double-blind, placebo-controlled design, we examined the effect of L-dopa, a dopamine precursor, on striatal resting-state FC in 19 healthy young adults.Weexamined the FC of 6 striatal regions of interest (ROIs) previously shown to elicit networks known to be associated with motivational, cognitive and motor subdivisions of the caudate and putamen (Di Martino et al., 2008). In addition to replicating the previously demonstrated patterns of striatal FC, we observed robust effects of L-dopa. Specifically, L-dopa increased FC in motor pathways connecting the putamen ROIs with the cerebellum and brainstem. Although L-dopa also increased FC between the inferior ventral striatum and ventrolateral prefrontal cortex, it disrupted ventral striatal and dorsal caudate FC with the default mode network. These alterations in FC are consistent with studies that have demonstrated dopaminergic modulation of cognitive and motor striatal networks in healthy participants. Recent studies have demonstrated altered resting state FC in several conditions believed to be characterized by abnormal dopaminergic neurotransmission. Our findings suggest that the application of similar experimental pharmacological manipulations in such populations may further our understanding of the role of dopaminergic neurotransmission in those conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Runx2-Cbfal, a Runt transcription factor, plays important roles during skeletal development. It is required for differentiation and function of osteoblasts. In its absence, chondrocyte hypertrophy is severely impaired and there is no vascularization of cartilage templates during skeletal development. These tissue-specific functions of Runx2 are likely to be dependent on its interaction with other proteins. We have therefore searched for proteins that may modulate the activity of Runx2. The yeast two-hybrid system was used to identify a groucho homologue, Grg5, as a Runx2-interacting protein. Grg5 enhances Runx2 activity in a cell culture-based assay and by analyses of postnatal growth in mice we demonstrate that Grg5 and Runx2 interact genetically. We also show that Runx2 haploinsufficiency in the absence of Grg5 results in a more severe delay in ossification of cranial sutures and fontanels than occurs with Runx2 haploinsufficiency on a wild-type background. Finally, we find shortening of the proliferative and hypertrophic zones, and expansion of the resting zone in the growth plates of Runx2(+/-)Grg5(-/-) mice that are associated with reduced Ihh expression and Indian hedgehog (Ihh) signaling. We therefore conclude that Grg5 enhances Runx2 activity in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of interaction between Asn259 (catalytic domain) with Gln821 (C-terminal domain) in PeptidaseN was investigated. The k(cat) of PeptidaseN containing Asn259Asp or Gln821Glu is enhanced whereas it is suppressed in Asn259AspGln821Glu. Structural analysis shows this interaction to change the relative disposition of active site residues, which modulates catalytic activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To identify ‘melanoma-specific’ microRNAs (miRNAs) we used an unbiased microRNA profiling approach to comprehensively study cutaneous melanoma in relation to other solid malignancies, which revealed 233 differentially expressed (≥ 2 fold, p < 0.05) miRNAs. Among the top 20 most significantly different miRNAs was hsa-miR-514a-3p. miR-514a is a member of a cluster of miRNAs (miR-506-514) involved in initiating melanocyte transformation and promotion of melanoma growth. We found miR-514a was expressed in 38/55 (69%) melanoma cell lines but in only 1/34 (3%) other solid cancers. To identify miR-514a regulated targets we conducted a miR-514a-mRNA ‘pull-down’ experiment, which revealed hundreds of genes, including: CTNNB1, CDK2, MC1R, and NF1, previously associated with melanoma. NF1 was selected for functional validation because of its recent implication inacquired resistance to BRAFV600E-targeted therapy. Luciferase-reporter assays confirmed NF1 as a direct target of miR-514a and over-expression of miR-514a in melanoma cell lines inhibited NF1 expression, which correlated with increased survival of BRAFV600E cells treated with PLX4032. These data provide another mechanism for the dysregulation of the MAPK pathway which may contribute to the profound resistance associated with current RAF-targeted therapies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the role of plant species in crops, pasture and native vegetation remnants in supporting agronomic pests and their predators. The study was conducted in three Australian States and across 290 sites sampled monthly for two years. Pastures played a key role in harbouring pest species consistent across States, while native vegetation hosted relatively more predators than other habitat types within each State. Furthermore, native plant species supported the lowest pest density and more predators than pests; in contrast, 75 of the exotic weed species surveyed hosted more pests than predators. Despite the role of pasture in harbouring pests, we found in NSW that pasture also supported the highest proportion of juvenile predators, while native vegetation remnants had the lowest. Our results indicate that non-crop habitat (native remnants or pasture) with few exotic weeds supports high predator and low pest arthropod densities, and that weeds are associated with high pest densities. By linking broad response variables such as ‘all pests’ with specific predictors such as ‘plant species’, our study will inform on-farm management actions of which weeds to control and which natives to plant or regenerate. This study shows the importance of knowing the function of habitats and plants species in supporting pests and predators in agricultural landscapes across multiple regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polydimethylsiloxane (PDMS) is the most commonly used material in the manufacture of customized cell culture devices. While there is concern that uncured PDMS oligomers may leach into culture medium and/or hydrophobic molecules may be absorbed into PDMS structures, there is no consensus on how or if PDMS influences cell behaviour. We observed that human umbilical cord blood (CB)-derived CD34+ cells expanded in standard culture medium on PDMS exhibit reduced CD38 surface expression, relative to cells cultured on tissue culture polystyrene (TCP). All-trans retinoic acid (ATRA) induces CD38 expression, and we reasoned that this hydrophobic molecule might be absorbed by PDMS. Through a series of experiments we demonstrated that ATRA-mediated CD38 expression was attenuated when cultures were maintained on PDMS. Medium pre-incubated on PDMS for extended durations resulted in a time-dependant reduction of ATRA in the medium and increasingly attenuated CD38 expression. This indicated a time-dependent absorption of ATRA into the PDMS. To better understand how PDMS might generally influence cell behaviour, Ingenuity Pathway Analysis (IPA) was used to identify potential upstream regulators. This analysis was performed for differentially expressed genes in primary cells including CD34+ haematopoietic progenitor cells, mesenchymal stromal cells (MSC), and keratinocytes, and cell lines including prostate cancer epithelial cells (LNCaP), breast cancer epithelial cells (MCF-7), and myeloid leukaemia cells (KG1a). IPA predicted that the most likely common upstream regulator of perturbed pathways was ATRA. We demonstrate here that ATRA is absorbed by PDMS in a time-dependent manner and results in the concomitant reduced expression of CD38 on the cell surface of CB-derived CD34+ cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phosphoprotein P of paramyxoviruses is known to play more than one role in genome transcription and replication. Phosphorylation of P at the NH2 terminus by cellular casein kinase II has been shown to be necessary for transcription of the genome in some of the viruses, while it is dispensable for replication. The phosphorylation null mutant of rinderpest virus P protein, in which three serine residues have been mutated, has been shown earlier to be non-functional in an in vivo minigenome replication/transcription system. In this work, we have shown that the phosphorylation of P protein is essential for transcription, whereas the null mutant is active in replication of the genome in vivo. The null mutant P acts as a transdominant repressor of transcriptional activity of wild-type P and as an activator of replication carried out by wild-type P protein. These results suggest the phosphorylation status of P may act as a replication switch during virus replication. We also show that the phosphorylation null mutant P is capable of interacting with L and N proteins and is able to form a tripartite complex of L-(N-P) when expressed in insect cells, similar to wild-type P protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cisplatin-based regimens are currently the most effective chemotherapy for non-small cell lung cancer (NSCLC). Cisplatin forms DNA crosslinks to stall DNA replication and induce apoptosis. However, intrinsic and acquired chemoresistance is a major therapeutic problem. We have identified ‘cell division cycle associated protein 3’ (CDCA3) as a novel protein that may prove useful in delaying or preventing cisplatin resistance in NSCLC. CDCA3 functions as part of an ubiquitin ligase complex to degrade the endogenous cell cycle inhibitors. While a role for CDCA3 in disease is emerging with elevated expression noted in oral squamous cell carcinoma, little else is known about CDCA3 or whether this protein may prove useful clinically.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The identification of small molecules that affect T cell activation is an important area of research. Three molecules that regulate plant growth and differentiation, but not their structurally similar analogs, were identified to enhance primary mouse CD4(+) T cell activation in conjunction with soluble anti-CD3 stimulation: Indoleacetic acid (natural plant auxin), 1-Napthaleneacetic acid (synthetic plant auxin) and 2,4-Dichlorophenoxyacetic acid (synthetic plant auxin and herbicide). These effects are distinct in comparison to Curcumin, the well known phenolic immunomodulator, which lowers T cell activation. An investigation into the mechanisms of action of the three plant growth regulators revealed a rapid induction of reactive oxygen species (ROS), mainly comprising H2O2 . In addition, these three molecules synergize with soluble anti-CD3 signaling to enhance intracellular Ca2+ concentrations Ca2+](i), leading to greater T cell activation, e.g. induction of CD25 and IL-2. Enhanced production of TNF alpha and IFN gamma by CD4+ T cells is also observed upon plant growth regulator treatment with soluble anti-CD3. Interestingly, maximal IL-2 production and CD4(+) T cell cycle progression are observed upon activation with soluble anti-CD3 and phorbol 12-myristate 13-acetate (PMA), a phorbol ester. Additionally, stimulation with PMA and Ionomcyin (a Ca2+ ionophore), which activates T cells by circumventing the TCR, and plant growth regulators also demonstrated the role of the strength of signal (SOS): T cell cycle progression is enhanced with gentle activation conditions but decreased with strong activation conditions. This study demonstrates the direct effects of three plant growth regulators on CD4(+) T cell activation and cycling. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analysis of the base pair doublet geometries in available crystal structures indicates that the often reported intrinsic curvature of DNA containing oligo-(d(A).d(T)) tracts may also depend on the nature of the flanking sequences. The presence of CA/TG doublet in particular at the 5' end of these tracts is expected to enhance their intrinsic bending property. To test this proposition, three oligonucleotides, d(GAAAAACCCCCC), d(CCCCCCAAAAAG), d(GAAAAATTTTTC), and their complementary sequences were synthesized to study the effect of various flanking sequences, at the 5' and 3' ends of the A-tracts, on the curvature of DNA in solution. An analysis of the polyacrylamide gel electrophoretic mobilities of these sequences under different conditions of salts and temperatures (below their melting points) clearly showed that the oligomer with CA/TG sequence in the center was always more retarded than the oligomer with AC/GT sequence, as well as the oligomer with AT/AT sequence. Hydroxyl radical probing of the sequences with AC/GT and CA/TG doublet junctions gives a similar cutting pattern in the A-tracts, which is quite different from that in the C-tracts, indicating that the oligo(A)-tracts have similar structures in the two oligomers. KMnO4 probing shows that the oligomer with a CA/TG doublet junction forms a kink that is responsible for its inherent curvature and unusual electrophoretic mobility. UV melting shows a reduced thermal stability of the duplex with CA/TG doublet junction, and circular dichroism (CD) studies indicate that a premelting transition occurs in the oligomer with CA/TG doublet step before global melting but not in the oligomer with AC/GT doublet step, which may correspond to thermally induced unbending of the oligomer. These observations indicate that the CA/TG doublet junction at the 5' end of the oligo(A)-tract has a crucial role in modulating the overall curvature in DNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analysis of the base pair doublet geometries in available crystal structures indicates that the often reported intrinsic curvature of DNA containing oligo-(d(A).d(T)) tracts may also depend on the nature of the flanking sequences. The presence of CA/TG doublet in particular at the 5' end of these tracts is expected to enhance their intrinsic bending property. To test this proposition, three oligonucleotides, d(GAAAAACCCCCC), d(CCCCCCAAAAAG), d(GAAAAATTTTTC), and their complementary sequences were synthesized to study the effect of various flanking sequences, at the 5' and 3' ends of the A-tracts, on the curvature of DNA in solution. An analysis of the polyacrylamide gel electrophoretic mobilities of these sequences under different conditions of salts and temperatures (below their melting points) clearly showed that the oligomer with CA/TG sequence in the center was always more retarded than the oligomer with AC/GT sequence, as well as the oligomer with AT/AT sequence. Hydroxyl radical probing of the sequences with AC/GT and CA/TG doublet junctions gives a similar cutting pattern in the A-tracts, which is quite different from that in the C-tracts, indicating that the oligo(A)-tracts have similar structures in the two oligomers. KMnO4 probing shows that the oligomer with a CA/TG doublet junction forms a kink that is responsible for its inherent curvature and unusual electrophoretic mobility. UV melting shows a reduced thermal stability of the duplex with CA/TG doublet junction, and circular dichroism (CD) studies indicate that a premelting transition occurs in the oligomer with CA/TG doublet step before global melting but not in the oligomer with AC/GT doublet step, which may correspond to thermally induced unbending of the oligomer. These observations indicate that the CA/TG doublet junction at the 5' end of the oligo(A)-tract has a crucial role in modulating the overall curvature in DNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analysis of the base pair doublet geometries in available crystal structures indicates that the often reported intrinsic curvature of DNA containing oligo-(d(A).d(T)) tracts may also depend on the nature of the flanking sequences. The presence of CA/TG doublet in particular at the 5' end of these tracts is expected to enhance their intrinsic bending property. To test this proposition, three oligonucleotides, d(GAAAAACCCCCC), d(CCCCCCAAAAAG), d(GAAAAATTTTTC), and their complementary sequences were synthesized to study the effect of various flanking sequences, at the 5' and 3' ends of the A-tracts, on the curvature of DNA in solution. An analysis of the polyacrylamide gel electrophoretic mobilities of these sequences under different conditions of salts and temperatures (below their melting points) clearly showed that the oligomer with CA/TG sequence in the center was always more retarded than the oligomer with AC/GT sequence, as well as the oligomer with AT/AT sequence. Hydroxyl radical probing of the sequences with AC/GT and CA/TG doublet junctions gives a similar cutting pattern in the A-tracts, which is quite different from that in the C-tracts, indicating that the oligo(A)-tracts have similar structures in the two oligomers. KMnO4 probing shows that the oligomer with a CA/TG doublet junction forms a kink that is responsible for its inherent curvature and unusual electrophoretic mobility. UV melting shows a reduced thermal stability of the duplex with CA/TG doublet junction, and circular dichroism (CD) studies indicate that a premelting transition occurs in the oligomer with CA/TG doublet step before global melting but not in the oligomer with AC/GT doublet step, which may correspond to thermally induced unbending of the oligomer. These observations indicate that the CA/TG doublet junction at the 5' end of the oligo(A)-tract has a crucial role in modulating the overall curvature in DNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

alpha-Synuclein aggregation is one of the major etiological factors implicated in Parkinson's disease (PD). The prevention of aggregation of alpha-synuclein is a potential therapeutic intervention for preventing PD. The discovery of natural products as alternative drugs to treat PD and related disorders is a current trend. The aqueous extract of Centella asiatica (CA) is traditionally used as a brain tonic and CA is known to improve cognition and memory. There are limited data on the role of CA in modulating amyloid-beta (A beta) levels in the brain and in A beta aggregation. Our study focuses on CA as a modulator of the alpha-synuclein aggregation pattern in vitro. Our investigation is focused on: (i) whether the CA leaf aqueous extract prevents the formation of aggregates from monomers (Phase I: alpha-synuclein + extract co-incubation); (ii) whether the CA aqueous extract prevents the formation of fibrils from oligomers (Phase II: extract added after oligomers formation); and (iii) whether the CA aqueous extract disintegrates the pre-formed fibrils (Phase III: extract added to mature fibrils and incubated for 9 days). The aggregation kinetics are studied using a thioflavin-T assay, circular dichroism, and transmission electron microscopy. The results showed that the CA aqueous extract completely inhibited the alpha-synuclein aggregation from monomers. Further, CA extract significantly inhibited the formation of oligomer to aggregates and favored the disintegration of the preformed fibrils. The study provides an insight in finding new natural products for future PD therapeutics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Hsp90 from Giardia lamblia is expressed by splicing of two independently transcribed RNA molecules, coded by genes named HspN and HspC located 777 kb apart. The reasons underlying such unique trans-splicing based generation of GlHsp90 remain unclear. Principle Finding: In this study using mass-spectrometry we identify the sequence of the unique, junctional peptide contributed by the 5' UTR of HspC ORF. This peptide is critical for the catalytic function of Hsp90 as it harbours an essential ``Arg'' in its sequence. We also show that full length GlHsp90 possesses all the functional hall marks of a canonical Hsp90 including its ability to bind and hydrolyze ATP. Using qRT-PCR as well as western blotting approach we find the reconstructed Hsp90 to be induced in response to heat shock. On the contrary we find GlHsp90 to be down regulated during transition from proliferative trophozoites to environmentally resistant cysts. This down regulation of GlHsp90 appears to be mechanistically linked to the encystation process as we find pharmacological inhibition of GlHsp90 function to specifically induce encystation. Significance: Our results implicate the trans-spliced GlHsp90 from Giardia lamblia to regulate an essential stage transition in the life cycle of this important human parasite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutations in the CINCINNATA (CIN) gene in Antirrhinum majus and its orthologs in Arabidopsis result in crinkly leaves as a result of excess growth towards the leaf margin. CIN homologs code for TCP (TEOSINTE-BRANCHED 1, CYCLOIDEA, PROLIFERATING CELL FACTOR 1 AND 2) transcription factors and are expressed in a broad zone in a growing leaf distal to the proliferation zone where they accelerate cell maturation. Although a few TCP targets are known, the functional basis of CIN-mediated leaf morphogenesis remains unclear. We compared the global transcription profiles of wild-type and the cin mutant of A. majus to identify the targets of CIN. We cloned and studied the direct targets using RNA in situ hybridization, DNA-protein interaction, chromatin immunoprecipitation and reporter gene analysis. Many of the genes involved in the auxin and cytokinin signaling pathways showed altered expression in the cin mutant. Further, we showed that CIN binds to genomic regions and directly promotes the transcription of a cytokinin receptor homolog HISTIDINE KINASE 4 (AmHK4) and an IAA3/SHY2 (INDOLE-3-ACETIC ACID INDUCIBLE 3/SHORT HYPOCOTYL 2) homolog in A. majus. Our results suggest that CIN limits excess cell proliferation and maintains the flatness of the leaf surface by directly modulating the hormone pathways involved in patterning cell proliferation and differentiation during leaf growth. 10.1111/(ISSN)1469-8137