962 resultados para MILK-FAT SYNTHESIS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, genetic parameters for test-day milk, fat, and protein yield were estimated for the first lactation. The data analyzed consisted of 1,433 first lactations of Murrah buffaloes, daughters of 113 sires from 12 herds in the state of São Paulo, Brazil, with calvings from 1985 to 2007. Ten-month classes of lactation days were considered for the test-day yields. The (co)variance components for the 3 traits were estimated using the regression analyses by Bayesian inference applying an animal model by Gibbs sampling. The contemporary groups were defined as herd-year-month of the test day. In the model, the random effects were additive genetic, permanent environment, and residual. The fixed effects were contemporary group and number of milkings (1 or 2), the linear and quadratic effects of the covariable age of the buffalo at calving, as well as the mean lactation curve of the population, which was modeled by orthogonal Legendre polynomials of fourth order. The random effects for the traits studied were modeled by Legendre polynomials of third and fourth order for additive genetic and permanent environment, respectively, the residual variances were modeled considering 4 residual classes. The heritability estimates for the traits were moderate (from 0.21-0.38), with higher estimates in the intermediate lactation phase. The genetic correlation estimates within and among the traits varied from 0.05 to 0.99. The results indicate that the selection for any trait test day will result in an indirect genetic gain for milk, fat, and protein yield in all periods of the lactation curve. The accuracy associated with estimated breeding values obtained using multi-trait random regression was slightly higher (around 8%) compared with single-trait random regression. This difference may be because to the greater amount of information available per animal. © 2013 American Dairy Science Association.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective was to identify a fat-to-protein ratio (FPR) cut-off to diagnose subclinical ketosis (SCK) and to evaluate the effect of propylene glycol (PPG) treatment of cows with high FPR. The optimized cut-off was > 1.42; sensitivity (Se) = 92%; specificity (Sp) = 65%. A cut-off > 1.5 was selected for the PPG trial for balanced Se-Sp. Fat-to-protein ratio cut-offs > 1.25, 1.35, 1.50, 1.60, and 1.70 resulted in Se-Sp of 100% to 49%, 96% to 59%, 75% to 78%, 33% to 90%, and 8% to 96%, respectively. The proportions of cows with FPR > 1.25, 1.35, 1.42, 1.50, 1.60, and 1.70 were 60%, 50%, 44%, 30%, 14%, and 6%, respectively. Incidences of clinical ketosis and milk yield were similar between cows that received 400 mL of PPG (n = 34) and control cows (n = 38). Prevalence of SCK at enrollment was 29.2%; therefore, FPR > 1.5 is not indicated for treatment. Lower cut-offs should be used for screening.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ATP-binding cassette (ABC) transporters ABCA1 and ABCG1 play an important role in cellular cholesterol homeostasis, but their function in mammary gland (MG) tissue remains elusive. A bovine MG model that allows repeated MG sampling in identical animals at different functional stages was used to test whether 1) ABCA1 and ABCG1 protein expression and subcellular localization in mammary epithelial cells (MEC) change during the pregnancy-lactation cycle, and 2) these 2 proteins were present in milk fat globules (MFG). Expression and localization in MEC were investigated in bovine MG tissues at the end of lactation, during the dry period (DP), and early lactation using immunohistochemical and immunofluorescence approaches. The presence of ABCA1 and ABCG1 in MFG isolated from fresh milk was determined by immunofluorescence. The ABCA1 protein expression in MEC, expressed as arbitrary units, was higher during the end of lactation (12.2±0.24) and the DP (12.5±0.22) as compared with during early lactation (10.2±0.65). In contrast, no significant change in ABCG1 expression existed between the stages. Throughout the cycle, ABCA1 and ABCG1 were detected in the apical (41.9±24.8 and 49.0±4.96% of cows, respectively), basal (56.2±28.1 and 54.6±7.78% of cows, respectively), or entire cytoplasm (56.8±13.4 and 61.6±14.4% of cows, respectively) of MEC, or showed combined localization. Unlike ABCG1, ABCA1 was absent at the apical aspect of MEC during early lactation. Immunolabeling experiments revealed the presence of ABCA1 and ABCG1 in MFG membranes. Findings suggest a differential, functional stage-dependent role of ABCA1 and ABCG1 in cholesterol homeostasis of the MG epithelium. The presence of ABCA1 and ABCG1 in MFG membranes suggests that these proteins are involved in cholesterol exchange between MEC and alveolar milk.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bibliography: p. 334-336.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of the present study was to determine the effects of trans-10, cis-12 conjugated linoleic acid (CLA) in adipose tissue explant cultures of growing pigs on the following responses: lipogenesis (measured as rate of C-14-labeled glucose incorporation over a subsequent 2-h incubation in the presence or absence of insulin), lipolysis (release of non-esterified fatty acid over a 2-h incubation in the presence or absence of isoproterenol), activities of lipogenic enzymes, and mRNA abundance of fatty acid synthase (FAS). Adipose tissue explants from nine growing pigs (78 +/- 3 kg) were cultured in 199 medium with insulin, dexamethasone and antibiotics for 4, 12, 24, and 48 h. The treatments were 1) control: 100 mu M polyvinyl alcohol (PVA); 2) pGH: 100 ng/mL porcine growth hormone (pGH) plus 100 mu M PVA; 3) CLA200: 200 mu M trans-10, cis-12 CLA; 4) CLA50: 50 mu M trans-10, cis-12 CLA, and 5) LA: 200 mu M linoleic acid. Fatty acids were added along with PVA (2: 1), respectively, for 24 h. Explants were collected after each culture period and assayed for lipogenesis. Transcripts of FAS mRNA were quantified by real-time RT-PCR after 24 and 48 h. Lipolysis and activities of FAS, glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and NADP-malate dehydrogenase were determined after 48 h. As expected, glucose incorporation was decreased (P < 0.05) in response to pGH treatment (positive control). LA had no effect on any parameter evaluated. Treatment with trans-10, cis-12 CLA decreased FAS activity (P < 0.05), but NADPH-generating enzymes were unaffected by treatments. Consistent with reduction in FAS activity, both lipid synthesis and FAS mRNA abundance were reduced with chronic CLA treatment, pGH increased baseline and stimulated lipolysis (P < 0.05) after 48 h of culture, while CLA treatment had no effect on non-esterified fatty acid release. Results of this study showed that trans-10, cis-12 CLA alters lipogenesis but has no effect on lipolysis in cultures of pig adipose tissue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conjugated linoleic acids (CLA) are potent anticarcinogens in animal and in vitro models as well as inhibitors of fatty acid synthesis in mammary gland, liver, and adipose tissue. Our objective was to evaluate long-term CLA supplementation of lactating dairy cows in tropical pasture on milk production and composition and residual effects posttreatment. Thirty crossbred cows grazing stargrass (Cynodon nlemfuensis Vanderyst var. nlemfuensis) were blocked by parity and received 150 g/d of a dietary fat supplement of either Ca-salts of palm oil fatty acids (control) or a mixture of Ca-salts of CLA (CLA treatment). Supplements of fatty acids were mixed with 4 kg/d of concentrate. Grazing plus supplements were estimated to provide 115% of the estimated metabolizable protein requirements from 28 to 84 d in milk (treatment period). The CLA supplement provided 15 g/d of cis-9, trans-11 and 22 g of cis-10, trans-12. Residual effects were evaluated from 85 to 112 d in milk (residual period) when cows were fed an 18% crude protein concentrate without added fat. The CLA treatment increased milk production but reduced milk fat concentration from 2.90 to 2.14% and fat production from 437 to 348 g/d. Milk protein concentration increased by 11.5% (2.79 to 3.11%) and production by 19% (422 to 504 g/d) in the cows fed CLA. The CLA treatment decreased milk energy concentration and increased milk volume, resulting in unchanged energy output. Milk production and protein concentration and production were also greater during the residual period for the CLA-treated cows. The CLA treatment reduced production of fatty acids (FA) of all chain lengths, but the larger effect was on short-chain FA, causing a shift toward a greater content of longer chain FA. The CLA treatment increased total milk CLA content by 30% and content of the trans-10, cis-12 CLA isomer by 88%. The CLA treatment tended to decrease the number of days open, suggesting a possible effect on reproduction. Under tropical grazing conditions, in a nutritionally challenging environment, CLA-treated cows decreased milk fat content and secreted the same amount of milk energy by increasing milk volume and milk protein production.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trans-10,cis-12 conjugated linoleic acid (CLA) supplementation causes milk fat depression in dairy cows, but CLA effects on glucose metabolism are not clear. The objective of the study was to investigate glucose metabolism, especially endogenous glucose production (eGP) and glucose oxidation (GOx), as well as hepatic genes involved in endogenous glucose production in Holstein cows supplemented either with 50 g of rumen-protected CLA (9% trans-10,cis-12 and 10% cis-9,trans-11; CLA; n=10) or 50 g of control fat (24% C18:2; Ctrl; n=10) from wk 2 before parturition to wk 9 of lactation. Animal performance data were recorded and blood metabolites and hormones were taken weekly from 2 wk before to 12 wk after parturition. During wk 3 and 9 after parturition, glucose tolerance tests were performed and eGP and GOx were measured by [U-(13)C] glucose infusion. Liver biopsies were taken at the same time to measure total fat and glycogen concentrations and gene expression of pyruvate carboxylase, cytosolic phosphoenolpyruvate carboxykinase, glucose-6-phosphatase, and carnitine palmitoyl-transferase 1. Conjugated linoleic acid feeding reduced milk fat, but increased milk lactose output; milk yield was higher starting 5 wk after parturition in CLA-fed cows than in Ctrl-fed cows. Energy balance was more negative during CLA supplementation, and plasma concentrations of glucose were higher immediately after calving in CLA-fed cows. Conjugated linoleic acid supplementation did not affect insulin release during glucose tolerance tests, but reduced eGP in wk 3, and eGP and GOx increased with time after parturition. Hepatic gene expression of cytosolic phosphoenolpyruvate carboxykinase tended to be lower in CLA-fed cows than in Ctrl-fed cows. In spite of lower eGP in CLA-fed cows, lactose output and plasma glucose concentrations were greater in CLA-fed cows than in Ctrl-fed cows. This suggests a CLA-related glucose sparing effect most likely due to lower glucose utilization for milk fat synthesis and probably because of a more efficient whole-body energy utilization in CLA-fed cows.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated the effects of organic and inorganic sources of minerals in diets for mid-lactation dairy cows on milk yield and composition, intake and total apparent digestibility of dry matter and nutrients, blood parameters, microbial protein synthesis, and energy and protein balances. Twenty Holstein cows averaging 146.83 +/- 67.34 days in milk and weighing 625.30 +/- 80.37 kg were used. The experimental design was a crossover. Diets were composed of corn silage (50%), ground grain corn, and soybean meal, differing with regard to the sources of trace minerals, plus an organic and inorganic mix. The organic mineral source increased milk fat and fat-corrected milk yield without changing milk yield, intake, or total apparent digestibility. Blood parameters, microbial protein synthesis, and energy and protein balances were not affected by the sources of minerals. Organic sources of minerals improve milk fat yield without affecting other parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clinical and biomedical studies have provided evidence for the critical role of n-3 fatty acids on the reduction of chronic disease risk in humans, including cardiovascular disease. In the current experiment, the potential to enhance milk n-3 content in two breeds with inherent genetic differences in mammary lipogenesis and de novo fatty acid synthesis was examined using extruded linseeds. Six lactating cows (three Holstein and three Jersey) were used in a two-treatment switchback design with 3 × 21-day experimental periods to evaluate the effect of iso-energetic replacement of calcium salts of palm oil distillate (CPO) in the diet (34 g/kg dry matter (DM)) with 100 g/kg DM extruded linseeds (LIN). For both breeds, replacing CPO with LIN had no effect (P > 0.05) on DM intake or milk yield, but reduced (P < 0.05) milk fat and protein yield (on average, from 760 to 706 and 573 to 552 g/day, respectively). Relative to CPO, the LIN treatment reduced (P < 0.01) total saturated fatty acid content and enhanced (P < 0.001) 18:3n-3 in milk, whereas breed by diet interactions were significant for milk fat 16:0, total trans fatty acid and conjugated linoleic acid concentrations. Increases in 18:3n-3 intake derived from LIN in the diet were transferred into milk with a mean marginal transfer efficiency of 1.8%. Proportionate changes in milk fatty acid composition were greater in the Jersey, highlighting the importance of diet–genotype interactions on mammary lipogenesis. More extensive studies are required to determine the role of genotype on milk fat composition responses to oilseeds in the diet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Milk provides many key nutrients but the saturated and trans fatty acids in milk fat are associated with perceived negative effects on human health, especially cardiovascular disease. Recent epidemiological studies and dietary intervention trials challenge this perception, however; available evidence does not support the concept that consumption of saturated fats or dairy products adversely affects the risk of coronary heart disease (although replacing some saturated fats with mono or polyunsaturated fats is likely to provide benefit). Furthermore, the trans fats found in dairy products are consumed in very low amounts and do not appear to have the negative health effects associated with the consumption of industrial sources of trans fat. Milk fat is an excellent source of oleic acid that originates mainly by endogenous synthesis from stearic acid, but increasing the milk fat content of unsaturated fatty acids requires dietary formulations that bypass rumen biohydrogenation. Recent research indicates that long-chain omega-3 fatty acids and conjugated linoleic acids have potential beneficial effects in health maintenance and the prevention of chronic diseases. Enhancing the milk fat content of these fatty acids offers exciting possibilities, but educating consumers about inaccurate and inappropriate generalisations about fat remains the primary challenge. Finally, individuals do not simply consume milk-fat-derived fatty acids on their own, but rather as components in dairy foods which are highly complex and may contain many beneficial ingredients. Overall, dairy products are critical in providing many of the essential nutrients in the human diet. Nevertheless, dairy products vary in their nutrient composition, including fat, and this needs to be considered in the context of dietary recommendations and our need to consume a balanced diet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study of UK retail milk identified highly significant variations in fat composition. The survey, conducted over 2 yr replicating summer and winter, sampled 22 brands, 10 of which indicated organic production systems. Results corroborate earlier farm-based findings considering fat composition of milk produced under conventional and organic management. Organic milk had higher concentrations of beneficial fatty acids (FA) than conventional milk, including total polyunsaturated fatty acids (PUFA; 39.4 vs. 31.8 g/kg of total FA), conjugated linoleic acid cis-9,trans-11 (CLA9; 7.4 v 5.6 g/kg of FA), and α-linolenic acid (α-LN; 6.9 vs. 4.4 g/kg of FA). As expected, purchase season had a strong effect on fat composition: compared with milk purchased in winter, summer milk had a lower concentration of saturated fatty acids (682 vs. 725 g/kg of FA) and higher concentrations of PUFA (37.6 vs. 32.8 g/kg of FA), CLA9 (8.1 vs. 4.7 g/kg of FA), and α-LN (6.5 vs. 4.6 g/kg of FA). Differences identified between sampling years were more surprising: compared with that in yr 2, milk purchased in year 1 had higher concentrations of PUFA (37.5 vs. 32.9 g/kg of FA), α-LN (6.0 vs. 5.1 g/kg of FA), and linoleic acid (19.9 vs. 17.5 g/kg of FA) and lower concentrations of C16:0 and C14:0 (332 vs. 357 and 110 vs. 118 g/kg of FA, respectively). Strong interactions were identified between management and season as well as between season and year of the study. As in the earlier farm studies, differences in fat composition between systems were greater for summer compared with winter milk. Large between-year differences may be due to changes in weather influencing milk composition through forage availability, quality, and intake. If climate change predictions materialize, both forage and dairy management may have to adapt to maintain current milk quality. Considerable variation existed in milk fat composition between brands.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ghrelin is a gastrointestinal hormone that acts in releasing growth hormone and influences the body general metabolism. It has been proposed as a candidate gene for traits such as growth, carcass quality, and milk production of livestock because it influences feed intake. In this context, the aim of this study was to verify the existence of polymorphisms in the ghrelin gene and their associations with milk, fat and protein yield, and percentage in water buffaloes (Bubalus bubalis). A group of 240 animals was studied. Five primer pairs were used and 11 single nucleotide polymorphisms (SNP) were found in the ghrelin gene by sequencing. The animals were genotyped for 8 SNP by PCR-RFLP. The SNP g.960G>A and g.778C>T were associated with fat yield and the SNP g.905T>C was associated with fat yield and percentage and protein percentage. These SNP are located in intronic regions of DNA and may be in noncoding RNA sites or affect transcriptional efciency. The ghrelin gene in buffaloes influences milk fat and protein synthesis. The polymorphisms observed can be used as molecular markers to assist selection. © 2013 American Dairy Science Association.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The objective of this study was to evaluate the effect of genetic polymorphism of kappa-casein, breed and seasonality on the physicochemical characteristics, composition and stability of milk in commercial dairy herds. A total of 879 milk and blood samples were collected from 603 Holstein and 276 Girolando cows, obtained during rainy and dry seasons. Milk samples were analyzed to determine the physicochemical characteristics, composition and ethanol stability, while blood samples were subjected to polymerase chain reaction to identify the kappa-casein genotype. The frequencies of genotypes AA, AB and BB of k-casein were respectively, 66.83, 31.84 and 1.33% for Holstein, and 71.38, 27.90 and 0.72% for the Girolando cows, respectively. The A allele was more frequent than the B allele, both for Holstein (0.827 and 0.173) and Girolando cows (0.853 and 0.147), respectively. Cows of AB and BB genotypes showed a higher milk fat content compared to the AA genotype. There was an interaction between breed and seasonality on the concentration of milk urea with higher values for Holstein and Girolando cows in the rainy and dry season, respectively. The levels of lactose, total solids, crude protein, true protein, casein and the casein:true protein ratio were higher during the dry season, while during the rainy season, the somatic cell count and milk urea concentration were higher. There was no association between milk stability and k-casein genotypes, but Holstein cows showed higher milk stability than Girolando cows, and milk was more stable during the rainy season than during the dry season.