25 resultados para MICROSPORIDIA


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protozoa are among the most important pathogens that can cause infection in immunocompromised patients. They infect particularly individuals with impaired cell immunity, such as those with hematologic neoplasias, those submitted to transplant of solid organs, those under high-dose corticosteroid therapy, and carriers of the human immunodeficiency virus. Among the protozoa that most commonly cause disease in immunocompromised individuals are Toxoplasma gondii, Trypanosoma cruzi, Cryptosporidium parvum, Isospora belli, Cyclospora cayetanensis and microsporidia; the former two cause severe encephalitis and myocarditis, and the others cause gastrointestinal infections. Early diagnosis and prompt institution of specific therapy for each of these organisms are basic measures to decrease morbidity and mortality associated with these infections.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Annotations of completely sequenced genomes reveal that nearly half of the genes identified are of unknown function, and that some belong to uncharacterized gene families. To help resolve such issues, information can be obtained from the comparative analysis of homologous genes in model organisms. Results: While characterizing genes from the retinitis pigmentosa locus RP26 at 2q31-q33, we have identified a new gene, ORMDL1, that belongs to a novel gene family comprising three genes in humans (ORMDL1, ORMDL2 and ORMDL3), and homologs in yeast, microsporidia, plants, Drosophila, urochordates and vertebrates. The human genes are expressed ubiquitously in adult and fetal tissues. The Drosophila ORMDL homolog is also expressed throughout embryonic and larval stages, particularly in ectodermally derived tissues. The ORMDL genes encode transmembrane proteins anchored in the endoplasmic reticulum (ER). Double knockout of the two Saccharomyces cerevisiae homologs leads to decreased growth rate and greater sensitivity to tunicamycin and dithiothreitol. Yeast mutants can be rescued by human ORMDL homologs. Conclusions: From protein sequence comparisons we have defined a novel gene family, not previously recognized because of the absence of a characterized functional signature. The sequence conservation of this family from yeast to vertebrates, the maintenance of duplicate copies in different lineages, the ubiquitous pattern of expression in human and Drosophila, the partial functional redundancy of the yeast homologs and phenotypic rescue by the human homologs, strongly support functional conservation. Subcellular localization and the response of yeast mutants to specific agents point to the involvement of ORMDL in protein folding in the ER.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Annotations of completely sequenced genomes reveal that nearly half of the genes identified are of unknown function, and that some belong to uncharacterized gene families. To help resolve such issues, information can be obtained from the comparative analysis of homologous genes in model organisms. Results: While characterizing genes from the retinitis pigmentosa locus RP26 at 2q31-q33, we have identified a new gene, ORMDL1, that belongs to a novel gene family comprising three genes in humans (ORMDL1, ORMDL2 and ORMDL3), and homologs in yeast, microsporidia, plants, Drosophila, urochordates and vertebrates. The human genes are expressed ubiquitously in adult and fetal tissues. The Drosophila ORMDL homolog is also expressed throughout embryonic and larval stages, particularly in ectodermally derived tissues. The ORMDL genes encode transmembrane proteins anchored in the endoplasmic reticulum (ER). Double knockout of the two Saccharomyces cerevisiae homologs leads to decreased growth rate and greater sensitivity to tunicamycin and dithiothreitol. Yeast mutants can be rescued by human ORMDL homologs. Conclusions: From protein sequence comparisons we have defined a novel gene family, not previously recognized because of the absence of a characterized functional signature. The sequence conservation of this family from yeast to vertebrates, the maintenance of duplicate copies in different lineages, the ubiquitous pattern of expression in human and Drosophila, the partial functional redundancy of the yeast homologs and phenotypic rescue by the human homologs, strongly support functional conservation. Subcellular localization and the response of yeast mutants to specific agents point to the involvement of ORMDL in protein folding in the ER.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We designed FISH-probes for two distinct microsporidian clades and demonstrated their application in detecting respectively Nosema/Vairimorpha and Dictyoceola species. We applied them to study the vertical transmission of two microsporidia infecting the amphipod Gammarus duebeni

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O mercado de peixes ornamentais vem crescendo gradativamente nos últimos anos e com a crescente pressão exercida nos bancos naturais de recursos pesqueiros, busca-se alternativas para a continuidade da produção de pescado, seja através da aqüicultura ou da busca por novos recursos pouco ou até mesmo inexplorado, como e o caso do cara-pix8una, Aequidens plagiozonatus. A partir desse conhecimento é importante a realização de estudos que caracterizem o perfil parasitológico dessas espécies de peixes a fim de verificar e controlar a disseminação de parasitas que geram desequilíbrio nos ecossistemas aquáticos. Por isso, o objetivo deste estudo foi Descrever morfologicamente os microparasitas (microsporídios, mixosporídios e coccidios) encontrados em A. plagiozonatus provenientes do rio Peixe-Boi /PA, através do levantamento de ações parasitárias causadas por microparasitas (microsporídios, myxosporídios e coccidios) com ênfase na morfologia destes. Para isso, foram realizadas 5 coletas, totalizando 100 espécimes, sendo estes necropsiados e tendo seus órgãos analisados. Dos órgãos parasitados foram retirados fragmentos, fixados e processados para microscopia de luz. Foram calculados o Indice hepatossomático dos exemplares e a prevalência parasitaria para cada grupo de parasitas analisados, enfatizando os microparasitas. A partir das observações feitas foram encontrados os 3 filos parasitas: Myxozoa, Microsporidia e Apicomplexa. A prevalência dos microsporídios nos exemplares estudados foi de 100%, dos mixosporidios 18% e dos Apicomplexa de 45%. Nossos dados representam uma importante contribuição para o estudo ictiossanitário em A. plagiozonatus na região, uma vez que qualquer atividade que envolva a extração de recursos naturais deve ser gerenciada por meio de medidas de ordenamento e manejo, para permitir o equilíbrio dos ecossistemas, promovendo o uso sustentável de seus recursos e garantindo a preservação do sistema, a fim de que se possa evitar a propagação e transferência de doenças por meio de animais aquáticos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabalho apresenta resultados obtidos em microscopia de luz (ML), microscopia eletrônica de transmissão (TEM) e microscopia eletrônica de varredura (SEM) do ciclo de vida de algumas espécies de microsporídios (phylum Microsporidia Balbiani, 1882), parasitas da fauna ictiológica da região amazônica. Especial destaque é dado aos aspectos ultra-estruturais das diferentes fases do ciclo de vida, com atenção especial para as células esporais, que são as que caracterizam os diferentes gêneros e as diferentes espécies. O tecido hospedeiro é relacionado aos aspectos de lise, que ocorrem freqüentemente, bem como aspectos ultra-estruturais de xenomas que ocorrem em certas espécies destes parasitas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Encephalitozoon cuniculi is an obligate intracellular, spore-forming parasite belonging to the microsporidia that can cause disseminated infection in immunocompromised persons. E. cuniculi spores infect host cells by germination, i.e., by explosively everting the polar filament, through which the spore contents (sporoplasms) are subsequently injected into the cytoplasm. In addition, we observed intracellular, nongerminated spores in various nonprofessional phagocytes. In MRC5 cells, the number of internalized spores was approximately 10-fold higher than the number of injected sporoplasms. Compared to the rate of uptake by human monocyte-derived macrophages, internalization rates by A549 cells, MRC5 cells, and 293 cells were 0.6, 4.4, and 22.2%, respectively. The mechanism of uptake was studied in MRC5 cells. Killed spores were internalized at the same rate as live spores, indicating that nongerminated parasites do not actively participate in cell entry. Cytochalasin D inhibited uptake of spores by 95%, demonstrating an actin-dependent process. By electron and epifluorescence microscopy, intracellular spores were found in a tightly fitting membrane-bound compartment. The vacuole containing the spores was positive for the lysosomal membrane protein LAMP-1 and colocalized with the late endosomal-lysosomal content marker rhodamine dextran. Our results show that, in addition to the unique way in which microsporidia infect cells, E. cuniculi spores enter nonprofessional phagocytes by phagocytosis and traffic into a late endosomal-lysosomal compartment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Apis mellifera filamentous virus (AmFV) is a large double stranded DNA virus of honey bees, but its relationship with other parasites and prevalence are poorly known. We analyzed individual honey bees from three colonies at different times post emergence in order to monitor the dynamics of the AmFV gut colonization under natural conditions. Prevalence and loads of microsporidia and trypanosomes were also recorded, as well as five common honey bee RNA viruses. The results show that a high proportion of bees get infected with AmFV during the first week post-emergence (75%) and that AmFV DNA levels remained constant. A similar pattern was observed for microsporidia while trypanosomes seem to require more time to colonize the gut. No significant associations between these three infections were found, but significant positive correlations were observed between AmFV and RNA viruses. In parallel, the prevalence of AmFV in France and Sweden was assessed from pooled honey bee workers. The data indicate that AmFV is almost ubiquitous, and does not seem to follow seasonal patterns, although higher viral loads were significantly detected in spring. A high prevalence of AmFV was also found in winter bees, without obvious impact on overwintering of the colonies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nuclear-coded valyl-tRNA synthetase (ValRS) of eukaryotes is regarded of mitochondrial origin. Complete ValRS sequences obtained by us from two amitochondriate protists, the diplomonad, Giardia lamblia and the parabasalid, Trichomonas vaginalis were of the eukaryotic type, strongly suggesting an identical history of ValRS in all eukaryotes studied so far. The findings indicate that diplomonads are secondarily amitochondriate and give further evidence for such conclusion reached recently concerning parabasalids. Together with similar findings on other amitochondriate groups (microsporidia and entamoebids), this work provides critical support for the emerging notion that no representatives of the premitochondrial stage of eukaryotic phylogenesis exist among the species living today.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Molecular phylogenetic analyses, based mainly on ribosomal RNA, show that three amitochondriate protist lineages, diplomonads, microsporidia, and trichomonads, emerge consistently at the base of the eukaryotic tree before groups having mitochondria. This suggests that these groups could have diverged before the mitochondrial endosymbiosis. Nevertheless, since all these organisms live in anaerobic environments, the absence of mitochondria might be due to secondary loss, as demonstrated for the later emerging eukaryote Entamoeba histolytica. We have now isolated from Trichomonas vaginalis a gene encoding a chaperone protein (HSP70) that in other lineages is addressed to the mitochondrial compartment. The phylogenetic reconstruction unambiguously located this HSP70 within a large set of mitochondrial sequences, itself a sister-group of α-purple bacteria. In addition, the T. vaginalis protein exhibits the GDAWV sequence signature, so far exclusively found in mitochondrial HSP70 and in proteobacterial dnaK. Thus mitochondrial endosymbiosis could have occurred earlier than previously assumed. The trichomonad double membrane-bounded organelles, the hydrogenosomes, could have evolved from mitochondria.