936 resultados para MICROPIPET ELECTRODES
Resumo:
To obtain a high quality EMG acquisition, the signal must be recorded as far away as possible from muscle innervations and tendon zones, which are known to shift during dynamic contractions. This study describes a methodology, using commercial bipolar electrodes, to identify better electrode positions for superficial EMG of lower limb muscles during dynamic contractions. Eight female volunteers participated in this study. Myoelectric signals of the vastus lateralis, gastrocnemius medialis, peroneus longus and tibialis anterior muscles were acquired during maximum isometric contractions using bipolar electrodes. The electrode positions of each muscle were selected assessing SENIAM and then, other positions were located along the length of muscle up and down the SENIAM site. The raw signal (density), the linear envelopes, the RMS value, the motor point site, the position of the IZ and its shift during dynamic contractions were taken into account to select and compare electrode positions. For vastus lateralis and peroneus longus, the best sites were 66% and 25% of muscle length, respectively (similar to SENIAM location). The position of the tibialis anterior electrodes presented the best signal at 47.5% of its length (different from SENIAM location). The position of the gastrocnemius medialis electrodes was at 38% of its length and SENIAM does not specify a precise location for signal acquisition. The proposed method should be considered as another methodological step in every EMG study to guarantee the quality of the signal and subsequent human movement interpretations. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Stimulating neural electrodes are required to deliver charge to an environment that presents itself as hostile. The electrodes need to maintain their electrical characteristics (charge and impedance) in vivo for a proper functioning of neural prostheses. Here we design implantable multi-walled carbon nanotubes coating for stainless steel substrate electrodes, targeted at wide frequency stimulation of deep brain structures. In well-controlled, low-frequency stimulation acute experiments, we show that multi-walled carbon nanotube electrodes maintain their charge storage capacity (CSC) and impedance in vivo. The difference in average CSCs (n = 4) between the in vivo (1.111 mC cm(-2)) and in vitro (1.008 mC cm(-2)) model was statistically insignificant (p > 0.05 or P-value = 0.715, two tailed). We also report on the transcription levels of the pro-inflammatory cytokine IL-1 beta and TLR2 receptor as an immediate response to low-frequency stimulation using RT-PCR. We show here that the IL-1 beta is part of the inflammatory response to low-frequency stimulation, but TLR2 is not significantly increased in stimulated tissue when compared to controls. The early stages of neuroinflammation due to mechanical and electrical trauma induced by implants can be better understood by detection of pro-inflammatory molecules rather than by histological studies. Tracking of such quantitative response profits from better analysis methods over several temporal and spatial scales. Our results concerning the evaluation of such inflammatory molecules revealed that transcripts for the cytokine IL-1 beta are upregulated in response to low-frequency stimulation, whereas no modulation was observed for TLR2. This result indicates that the early response of the brain to mechanical trauma and low-frequency stimulation activates the IL-1 beta signaling cascade but not that of TLR2.
Resumo:
Objectives: To determine the differences between tympanic and extratympanic electrodes regarding recording technique, comfort and ease of execution of the exam, and quality of auditory potential tracings. Study Design: Prospective cross-section investigation. Methods: Determination of the summation potential/action potential (SP/AP) ratio by electrocochleography (EchoG) using tympanic and extratympanic electrodes and separate analysis of SP and AP regarding the amplitude recorded. Results: Twenty-three subjects (15 men and 8 women; mean age: 33.17 years) with normal tonal threshold audiometry were evaluated. EchoG analysis revealed no significant difference between the two tympanic electrodes. Eleven of the 23 subjects reported discomfort with the insertion of the tympanic electrode even with the use of topical xylocaine, whereas no complaints of discomfort were reported with the use of the extratympanic electrode. Conclusions: Both electrodes were effective for EchoG evaluation, but the extratympanic one was easier to insert and did not cause discomfort. However, the tympanic electrode produced tracings of greater amplitude and of better reproducibility. Laryngoscope, 119:563-566, 2009
Resumo:
Celiac disease is a gluten-induced autoimmune enteropathy characterized by the presence of tissue tranglutaminase (tTG) autoantibodies. A disposable electrochemical immunosensor (EI) for the detection of IgA and IgG type anti-tTG autoantibodies in real patient’s samples is presented. Screen-printed carbon electrodes (SPCE) nanostructurized with carbon nanotubes and gold nanoparticles were used as the transducer surface. This transducer exhibits the excellent characteristics of carbon–metal nanoparticle hybrid conjugation and led to the amplification of the immunological interaction. The immunosensing strategy consisted of the immobilization of tTG on the nanostructured electrode surface followed by the electrochemical detection of the autoantibodies present in the samples using an alkaline phosphatase (AP) labelled anti-human IgA or IgG antibody. The analytical signal was based on the anodic redissolution of enzymatically generated silver by cyclic voltammetry. The results obtained were corroborated with a commercial ELISA kit indicating that the electrochemical immunosensor is a trustful analytical screening tool.
Resumo:
Disposable screen-printed electrodes (SPCE) were modified using a cosmetic product to partially block the electrode surface in order to obtain a microelectrode array. The microarrays formed were electropolymerized with aniline. Scanning electron microscopy was used to evaluate the modified and polymerized electrode surface. Electrochemical characteristics of the constructed sensor for cadmium analysis were evaluated by cyclic and square-wave voltammetry. Optimized stripping procedure in which the preconcentration of cadmium was achieved by depositing at –1.20 V (vs. Ag/AgCl) resulted in a well defined anodic peak at approximately –0.7 V at pH 4.6. The achieved limit of detection was 4 × 10−9 mol dm−3. Spray modified and polymerized microarray electrodes were successfully applied to quantify cadmium in fish sample digests.
Resumo:
Nickel-copper metallic foams were electrodeposited from an acidic electrolyte, using hydrogen bubble evolution as a dynamic template. Their morphology and chemical composition was studied by scanning electron microscopy and related to the deposition parameters (applied current density and deposition time). For high currents densities (above 1 A cm(-2)) the nickel-copper deposits have a three-dimensional foam-like morphology with randomly distributed nearly-circular pores whose walls present an open dendritic structure. The nickel-copper foams are crystalline and composed of pure nickel and a copper-rich phase containing nickel in solid solution. The electrochemical behaviour of the material was studied by cyclic voltammetry and chronopotentiometry (charge-discharge curves) aiming at its application as a positive electrode for supercapacitors. Cyclic voltammograms showed that the Ni-Cu foams have a pseudocapacitive behaviour. The specific capacitance was calculated from charge-discharge data and the best value (105 F g(-1) at 1 mA cm(-2)) was obtained for nickel-copper foams deposited at 1.8 A cm(-2) for 180 s. Cycling stability of these foams was also assessed and they present a 90 % capacitance retention after 10,000 cycles at 10 mA cm(-2).
Resumo:
A flow injection analysis (FIA) system comprising a tartrate- (TAT) selective electrode has been developed for determination of tartaric acid in wines. Several electrodes constructed for this purpose had a PVC membrane with a complex of quaternary ammonium and TAT as anion exchanger, a phenol derivative as additive, and a more or less polar mediator solvent. Characterization of the electrodes showed behavior was best for membranes with o-nitrophenyl octyl ether as solvent. On injection of 500 μL into a phosphate buffer carrier (pH = 3.1; ionic strength 10–2 mol/L) flowing at 3 mL/min, the slope was 58.06 ± 0.6 with a lower limit of linear range of 5.0 × 10–4 mol/L TAT and R2 = 0.9989. The interference of several species, e.g. chloride, bromide, iodide, nitrate, gallic acid, tannin, sucrose, glucose, fructose, acetate, and citrate, was evaluated in terms of potentiometric selectivity coefficients. The Hofmeister series was followed for inorganic species and the most interfering organic ion was citrate. When red and white wines were analyzed and the results compared with those from an independent method they were found to be accurate, with relative standard deviations below 5.0%.
Resumo:
Aiming the establishment of simple and accurate readings of citric acid (CA) in complex samples, citrate (CIT) selective electrodes with tubular configuration and polymeric membranes plus a quaternary ammonium ion exchanger were constructed. Several selective membranes were prepared for this purpose, having distinct mediator solvents (with quite different polarities) and, in some cases, p-tert-octylphenol (TOP) as additive. The latter was used regarding a possible increase in selectivity. The general working characteristics of all prepared electrodes were evaluated in a low dispersion flow injection analysis (FIA) manifold by injecting 500µl of citrate standard solutions into an ionic strength (IS) adjuster carrier (10−2 mol l−1) flowing at 3ml min−1. Good potentiometric response, with an average slope and a repeatability of 61.9mV per decade and ±0.8%, respectively, resulted from selective membranes comprising additive and bis(2-ethylhexyl)sebacate (bEHS) as mediator solvent. The same membranes conducted as well to the best selectivity characteristics, assessed by the separated solutions method and for several chemical species, such as chloride, nitrate, ascorbate, glucose, fructose and sucrose. Pharmaceutical preparations, soft drinks and beers were analyzed under conditions that enabled simultaneous pH and ionic strength adjustment (pH = 3.2; ionic strength = 10−2 mol l−1), and the attained results agreed well with the used reference method (relative error < 4%). The above experimental conditions promoted a significant increase in sensitivity of the potentiometric response, with a supra-Nernstian slope of 80.2mV per decade, and allowed the analysis of about 90 samples per hour, with a relative standard deviation <1.0%.
Resumo:
A flow injection analysis (FIA) system comprising a cysteine selective electrode as detection system was developed for determination of this amino acid in pharmaceuticals. Several electrodes were constructed for this purpose, having PVC membranes with different ionic exchangers and mediator solvents. Better working characteristics were attained with membranes comprising o-nitrophenyl octyl ether as mediator solvent and a tetraphenylborate based ionic-sensor. Injection of 500 µL standard solutions into an ionic strength adjuster carrier (3x10-3 M) of barium chloride flowing at 2.4mL min-1, showed linearity ranges from 5.0x10-5 to 5.0x10-3 M, with slopes of 76.4±0.6mV decade-1 and R2>0.9935. Slope decreased significantly under the requirement of a pH adjustment, selected at 4.5. Interference of several compounds (sodium, potassium, magnesium, barium, glucose, fructose, and sucrose) was estimated by potentiometric selectivity coefficients and considered negligible. Analysis of real samples were performed and considered accurate, with a relative error to an independent method of +2.7%.
Resumo:
A flow injection analysis (FIA) system having a chlormequat selective electrode is proposed. Several electrodes with poly(vinyl chloride) based membranes were constructed for this purpose. Comparative characterization suggestedthe use of membrane with chlormequat tetraphenylborate and dibutylphthalate. On a single-line FIA set-up, operating with 1x10-2 mol L-1 ionic strength and 6.3 pH, calibration curves presented slopes of 53.6±0.4mV decade-1 within 5.0x10-6 and1.0x10-3 mol L-1, andsquaredcorrelation coefficients >0.9953. The detection limit was 2.2x10-6 mol L-1 and the repeatability equal to ±0.68mV (0.7%). A dual-channel FIA manifold was therefore constructed, enabling automatic attainment of previous ionic strength andpH conditions and thus eliminating sample preparation steps. Slopes of 45.5±0.2mV decade -1 along a concentration range of 8.0x10-6 to 1.0x10-3 mol L-1 with a repeatability ±0.4mV (0.69%) were obtained. Analyses of real samples were performed, and recovery gave results ranging from 96.6 to 101.1%.
Resumo:
This work proposes a new biomimetic sensor material for trimethoprim. It is prepared by means of radical polymerization, having trimethylolpropane trimethacrylate as cross-linker, benzoyl peroxide as radicalar iniciator, chloroform as porogenic solvent, and methacrylic acid and 2-vinyl pyridine as monomers. Different percentages of sensor in a range between 1 and 6% were studied. Their behavior was compared to that obtained with ion-exchanger quaternary ammonium salt (additive tetrakis(p-chlorophenyl)borate or tetraphenylborate). The effect of an anionic additive in the sensing membrane was also tested. Trimethoprim sensors with 1% of imprinted particles from methacrylic acid monomers showed the best response in terms of slope (59.7 mV/decade) and detection limit (4.01×10−7 mol/L). These electrodes displayed also a good selectivity towards nickel, manganese aluminium, ammonium, lead, potassium, sodium, iron, chromium, sulfadiazine, alanine, cysteine, tryptophan, valine and glycine. The sensors were not affected by pH changes from 2 to 6. They were successfully applied to the analysis of water from aquaculture.
Resumo:
Journal of Electroanalytical Chemistry 541 (2003) 153-162
Resumo:
Applications involving biosignals, such as Electrocardiography (ECG), are becoming more pervasive with the extension towards non-intrusive scenarios helping targeting ambulatory healthcare monitoring, emotion assessment, among many others. In this study we introduce a new type of silver/silver chloride (Ag/AgCl) electrodes based on a paper substrate and produced using an inkjet printing technique. This type of electrodes can increase the potential applications of biosignal acquisition technologies for everyday life use, given that there are several advantages, such as cost reduction and easier recycling, resultant from the approach explored in our work. We performed a comparison study to assess the quality of this new electrode type, in which ECG data was collected with three types of Ag/AgCl electrodes: i) gelled; ii) dry iii) paper-based inkjet printed. We also compared the performance of each electrode when acquired using a professional-grade gold standard device, and a low cost platform. Experimental results showed that data acquired using our proposed inkjet printed electrode is highly correlated with data obtained through conventional electrodes. Moreover, the electrodes are robust to high-end and low-end data acquisition devices. Copyright © 2014 SCITEPRESS - Science and Technology Publications. All rights reserved.
Resumo:
The electrooxidative behavior of pravastatin (PRV) in aqueous media was studied by square-wave voltammetry at a glassycarbon electrode (GCE) and at a screen-printed carbon electrode (SPCE). Maximum peak current intensities in a pH 5.0 buffer were obtained at +1.3 V vs. AgCl/Ag and +1.0 V vs. Ag for the GCE and SPCE surface respectively. Validation of the developed methodologies revealed good performance characteristics and confirmed their applicability to the quantification of PRV in pharmaceutical products, without significant sample pretreatment. A comparative analysis between the two electrode types showed that SPCEs are preferred as an electrode surface because of their higher sensitivity and the elimination of the need to clean the electrode’s surface for its renewal, which frequently is, if not always, the rate-limiting step in voltammetric analysis.
Resumo:
Nickel-copper metallic foams were electrodeposited from an acidic electrolyte, using hydrogen bubble evolution as a dynamic template. Their morphology and chemical composition was studied by scanning electron microscopy and related to the deposition parameters (applied current density and deposition time). For high currents densities (above 1 A cm(-2)) the nickel-copper deposits have a three-dimensional foam-like morphology with randomly distributed nearly-circular pores whose walls present an open dendritic structure. The nickel-copper foams are crystalline and composed of pure nickel and a copper-rich phase containing nickel in solid solution. The electrochemical behaviour of the material was studied by cyclic voltammetry and chronopotentiometry (charge-discharge curves) aiming at its application as a positive electrode for supercapacitors. Cyclic voltammograms showed that the Ni-Cu foams have a pseudocapacitive behaviour. The specific capacitance was calculated from charge-discharge data and the best value (105 F g(-1) at 1 mA cm(-2)) was obtained for nickel-copper foams deposited at 1.8 A cm(-2) for 180 s. Cycling stability of these foams was also assessed and they present a 90 % capacitance retention after 10,000 cycles at 10 mA cm(-2).