107 resultados para MICRODOMAINS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endothelial cells (EC) are essential regulator of vascular homeostasis through the generation and release of various bioactive agents, including nitric oxide (NO). NO modulates several vascular functions such as vascular tone and permeability, through the stimulation of soluble guanylate cyclase (sGC) leading to the production of cGMP. Conversely, phosphodiesterases (PDEs) are enzymes metabolizing cyclic nucleotides (cGMP and cAMP) and are therefore major regulatory players for cGMP and cAMP signalling pathways. Although ECs are the main source of NO, little is known on the endothelial NO-cGMP signalling pathway and cellular outcomes. It was then hypothesized that a specific population of cGMP-phosphodiesterases allows ECs to stabilize cGMP levels despite the elevated production of NO. Expression of cGMP-phosphodiesterases was initially studied in resistance mesenteric arteries from mice. PDE5 and PDE6 were both found at mRNA and protein levels in native arteries but PDE6 is not found in cultured ECs. Interestingly, subcellular distributions of both enzymes were distinct. PDE5 appeared to be homogeneously distributed whilst PDE6 catalytic subunits (PDE6 and PDE6) showed a preferential staining in the perinuclear region. These results suggest that PDE6 might be involved in the regulation of cGMP microdomains. Based on these findings, a mathematical model was developed. Simulations of dynamic cGMP levels in ECs support the notion of cGMP microdomains dependent on PDE6 expression and localization. In the absence of PDE6, application of NO either as a single bolus or repetitive pulses led to a homogeneous increase in cGMP levels in ECs despite PDE5 homogeneous distribution. However, PDE6 subcellular targeting to the perinuclear membrane generated a cGMP-depleted perinuclear space. The findings from this study provide the first evidence of the expression and specific intracellular distribution of PDE6 in native endothelial cells that strongly support their involvement in the generation of cGMP microdomains

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endothelial cells (EC) are essential regulator of vascular homeostasis through the generation and release of various bioactive agents, including nitric oxide (NO). NO modulates several vascular functions such as vascular tone and permeability, through the stimulation of soluble guanylate cyclase (sGC) leading to the production of cGMP. Conversely, phosphodiesterases (PDEs) are enzymes metabolizing cyclic nucleotides (cGMP and cAMP) and are therefore major regulatory players for cGMP and cAMP signalling pathways. Although ECs are the main source of NO, little is known on the endothelial NO-cGMP signalling pathway and cellular outcomes. It was then hypothesized that a specific population of cGMP-phosphodiesterases allows ECs to stabilize cGMP levels despite the elevated production of NO. Expression of cGMP-phosphodiesterases was initially studied in resistance mesenteric arteries from mice. PDE5 and PDE6 were both found at mRNA and protein levels in native arteries but PDE6 is not found in cultured ECs. Interestingly, subcellular distributions of both enzymes were distinct. PDE5 appeared to be homogeneously distributed whilst PDE6 catalytic subunits (PDE6 and PDE6) showed a preferential staining in the perinuclear region. These results suggest that PDE6 might be involved in the regulation of cGMP microdomains. Based on these findings, a mathematical model was developed. Simulations of dynamic cGMP levels in ECs support the notion of cGMP microdomains dependent on PDE6 expression and localization. In the absence of PDE6, application of NO either as a single bolus or repetitive pulses led to a homogeneous increase in cGMP levels in ECs despite PDE5 homogeneous distribution. However, PDE6 subcellular targeting to the perinuclear membrane generated a cGMP-depleted perinuclear space. The findings from this study provide the first evidence of the expression and specific intracellular distribution of PDE6 in native endothelial cells that strongly support their involvement in the generation of cGMP microdomains

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influence of cholesterol on activated protein C (APC) anticoagulant activity in plasma and on factor Va inactivation was investigated. Anticoagulant and procoagulant activities of phosphatidylcholine/phosphatidylserine (PC/PS) vesicles containing cholesterol were assessed in the presence and absence of APC using factor Xa-1-stage clotting and factor Va inactivation assays. Cholesterol at approximate physiological membrane levels (30%) in PC/PS (60%/10% w/w) vesicles prolonged the factor Xa-1-stage clotting time dose-dependently in the presence of APC but not in the absence of APC. APC-mediated cleavage of purified recombinant factor Va variants that were modified at specific APC cleavage sites (Q306/Q679-factor Va; Q506/Q679-factor Va) was studied to define the effects of cholesterol on APC cleavage at R506 and R306. When compared to control PC/PS vesicles, cholesterol in PC/PS vesicles enhanced factor Va inactivation and the rate of APC cleavage at both R506 and R306. Cholesterol also enhanced APC cleavage rates at R306 in the presence of the APC cofactor, protein S. In summary, APC anticoagulant activity in plasma and factor Va inactivation as a result of cleavages at R506 and R306 by APC is markedly enhanced by cholesterol in phospholipid vesicles. These results suggest that cholesterol in a membrane surface may selectively enhance APC activities. © 2005 International Society on Thrombosis and Haemostasis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dynamic lateral segregation of signaling proteins into microdomains is proposed to facilitate signal transduction, but the constraints on microdomain size, mobility, and diffusion that might realize this function are undefined. Here we interrogate a stochastic spatial model of the plasma membrane to determine how microdomains affect protein dynamics. Taking lipid rafts as representative microdomains, we show that reduced protein mobility in rafts segregates dynamically partitioning proteins, but the equilibrium concentration is largely independent of raft size and mobility. Rafts weakly impede small-scale protein diffusion but more strongly impede long-range protein mobility. The long-range mobility of raft-partitioning and raft-excluded proteins, however, is reduced to a similar extent. Dynamic partitioning into rafts increases specific interprotein collision rates, but to maximize this critical, biologically relevant function, rafts must be small (diameter, 6 to 14 nm) and mobile. Intermolecular collisions can also be favored by the selective capture and exclusion of proteins by rafts, although this mechanism is generally less efficient than simple dynamic partitioning. Generalizing these results, we conclude that microdomains can readily operate as protein concentrators or isolators but there appear to be significant constraints on size and mobility if microdomains are also required to function as reaction chambers that facilitate nanoscale protein-protein interactions. These results may have significant implications for the many signaling cascades that are scaffolded or assembled in plasma membrane microdomains.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Self-segregation and compartimentalisation are observed experimentally to occur spontaneously on live membranes as well as reconstructed model membranes. It is believed that many of these processes are caused or supported by anomalous diffusive behaviours of biomolecules on membranes due to the complex and heterogeneous nature of these environments. These phenomena are on the one hand of great interest in biology, since they may be an important way for biological systems to selectively localize receptors, regulate signaling or modulate kinetics; and on the other, they provide an inspiration for engineering designs that mimick natural systems. We present an interactive software package we are developing for the purpose of simulating such processes numerically using a fundamental Monte Carlo approach. This program includes the ability to simulate kinetics and mass transport in the presence of either mobile or immobile obstacles and other relevant structures such as liquid-ordered lipid microdomains. We also present preliminary simulation results regarding the selective spatial localization and chemical kinetics modulating power of immobile obstacles on the membrane, obtained using the program.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on X-ray diffraction and electron microscopy it is shown that oxides of the general formula La Ba2Cu3O7−δ become tetragonal when δ deviates slightly from 0. This tetragonal structure is similar to that of La3−xBa3+xCu6O14+δ, with a cubic perovskite subcell and triple periodicity. Electron micrographs of these tetragonal oxides show 90° microdomains. Orthorhombic LaBa2Cu3O7−δ with high Tc (not, vert, similar77 K) is found only when δ reverse similar, equals 0; this sample is subject to formation of twins. Fluorine substitution seems to favor superconductivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Key points center dot Active calcium signal propagation occurs when an initial calcium trigger elicits calcium release through endoplasmic reticulum (ER) receptors. A high concentration of the calcium trigger in thin-calibre dendrites would suppress release of calcium through hippocampal inositol trisphosphate receptors (InsP3Rs). center dot Could the high-density expression of A-type K+ channels in thin-calibre dendrites be a mechanism for inhibiting this suppression, thereby restoring the utility of the ER as a substrate for active calcium propagation? center dot Quantitative analyses involving experimentally constrained models reveal a bell-shaped dependence of calcium released through InsP3Rs on the A-type K+ channel density, during the propagation of a calcium wave. center dot A-type K+ channels regulated the relative contribution of ER calcium to the induction of synaptic plasticity in the presence of model metabotropic glutamate receptors. center dot These results identify a novel form of interaction between active dendrites and the ER membrane and suggest that A-type K+ channels are ideally placed for inhibiting the suppression of InsP3Rs in thin-calibre dendrites. Abstract The A-type potassium current has been implicated in the regulation of several physiological processes. Here, we explore a role for the A-type potassium current in regulating the release of calcium through inositol trisphosphate receptors (InsP3R) that reside on the endoplasmic reticulum (ER) of hippocampal pyramidal neurons. To do this, we constructed morphologically realistic, conductance-based models equipped with kinetic schemes that govern several calcium signalling modules and pathways, and constrained the distributions and properties of constitutive components by experimental measurements from these neurons. Employing these models, we establish a bell-shaped dependence of calcium release through InsP3Rs on the density ofA-type potassium channels, during the propagation of an intraneuronal calcium wave initiated through established protocols. Exploring the sensitivities of calcium wave initiation and propagation to several underlying parameters, we found that ER calcium release critically depends on dendritic diameter and that wave initiation occurred at branch points as a consequence of a high surface area to volume ratio of oblique dendrites. Furthermore, analogous to the role ofA-type potassium channels in regulating spike latency, we found that an increase in the density ofA-type potassium channels led to increases in the latency and the temporal spread of a propagating calcium wave. Next, we incorporated kinetic models for the metabotropic glutamate receptor (mGluR) signalling components and a calcium-controlled plasticity rule into our model and demonstrate thatthe presence of mGluRs induced a leftward shift in a BienenstockCooperMunro-like synaptic plasticity profile. Finally, we show that the A-type potassium current could regulate the relative contribution of ER calcium to synaptic plasticity induced either through 900 pulses of various stimulus frequencies or through theta burst stimulation. Our results establish a novel form of interaction between active dendrites and the ER membrane, uncovering a powerful mechanism that could regulate biophysical/biochemical signal integration and steer the spatiotemporal spread of signalling microdomains through changes in dendritic excitability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Folding of Ubiquitin (Ub), a functionally important protein found in eukaryotic organisms, is investigated at low and neutral pH at different temperatures using simulations of the coarse-grained self-organized-polymer model with side chains (SOP-SC). The melting temperatures (T-m's), identified with the peaks in the heat capacity curves, decrease as pH decreases, in qualitative agreement with experiments. The calculated radius of gyration, showing dramatic variations with pH, is in excellent agreement with scattering experiments. At T-m Ub folds in a two-state manner at low and neutral pH. Clustering analysis of the conformations sampled in equilibrium folding trajectories at T-m with multiple transitions between the folded and unfolded states, shows a network of metastable states connecting the native and unfolded states. At low and neutral pH, Ub folds with high probability through a preferred set of conformations resulting in a pH-dependent dominant folding pathway. Folding kinetics reveal that Ub assembly at low pH occurs by multiple pathways involving a combination of nucleation-collapse and diffusion collision mechanism. The mechanism by which Ub folds is dictated by the stability of the key secondary structural elements responsible for establishing long-range contacts and collapse of Ub. Nucleation collapse mechanism holds if the stability of these elements are marginal, as would be the case at elevated temperatures. If the lifetimes associated with these structured microdomains are on the order of hundreds of microseconds, then Ub folding follows the diffusion collision mechanism with intermediates, many of which coincide with those found in equilibrium. Folding at neutral pH is a sequential process with a populated intermediate resembling that sampled at equilibrium. The transition state structures, obtained using a P-fold analysis, are homogeneous and globular with most of the secondary and tertiary structures being native-like. Many of our findings for both the thermodynamics and kinetics of folding are not only in agreement with experiments but also provide missing details not resolvable in standard experiments. The key prediction that folding mechanism varies dramatically with pH is amenable to experimental tests.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

质膜上存在一种富含甾醇物质的液相有序膜脂微区,被称作脂筏 (lipid rafts或lipid microdomains)。这种小的膜微区可以通过在质膜上的侧向移动,聚集形成较大的片状结构,而与微区相关联的蛋白可以通过脂筏的这种聚合作用而凝聚分布于特定的亚细胞结构上。脂筏区域在真菌和动物质膜上具极性分布,并参与细胞的极性形态建成和运动。最近,通过生物化学研究证实,脂筏也存在于植物细胞,然而迄今为止,脂筏与植物细胞极性生长相关联的直接功能证据尚未见报道。 NADPH氧化酶 (NOX,在植物中又称为 Rboh) 产生的活性氧 (Reactive oxygen species, ROS) 可能是调控植物细胞(包括花粉管、根毛和墨角藻合子等)极性生长的通用信号机制。花粉管作为研究细胞极性控制的一种理想模式系统,已被许多信号转导调控研究所采用。在本研究中,我们使用一种能螯合甾醇类物质的多烯类抗生素filipin破坏脂筏结构,以探讨脂筏极化对ROS介导的白杄花粉管极性生长的作用。 我们首次在白杄 (Picea meyeri) 花粉管上应用一种全新的苯乙烯基染料di-4-ANEPPDHQ,成功地在活体细胞上观察到脂筏在花粉管生长顶端的极性分布模式。通过脂筏和甾醇在质膜上的相似定位清楚表明:在花粉管极性生长过程中,存在富含甾醇类物质的质膜微区在花粉管生长顶端的极化现象。 氮蓝四唑(NBT)的还原和二氯二氢荧光素(H2DCF)的氧化均显示,在活跃生长的花粉管顶端区域存在一个以顶端为基底的陡峭ROS梯度,从而进一步验证了ROS在细胞极性生长过程中的信号作用。此外,我们还发现在生长花粉管的亚顶端位置有另一类性质的活性氧组分存在,该ROS组分与线粒体的能量代谢相关。研究结果首次揭示,在快速生长的花粉管中同时存在两类性质不同的ROS组分。 ROS是一种寿命很短而且容易扩散的分子,NADPH氧化酶产生的ROS信号在细胞伸长位点的准确定位是调控极性生长的必要条件。免疫共定位实验显示,NOX成簇极化分布于花粉管的生长顶端。使用filipin进行甾醇的螯合会破坏膜的异质性,干扰NOX簇在生长顶端的定位,减少了顶端的ROS形成,消弱了胞质Ca2+ 浓度梯度,进而抑制了花粉管的顶端生长。 在纯化质膜的基础上,我们使用Triton去垢剂处理结合Optiprep密度梯度离心,分离纯化了抗去垢剂抽提的质膜微区 (Detergent-resistant microdomains, DRMs)。通过免疫印迹分析证实,NADPH氧化酶部分地存在于DRMs中。非变性胶活性实验证明,该酶需要脂筏定位来保持酶活性。因此我们认为,在正常的细胞极性生长中,脂筏招募并运载NADPH氧化酶到花粉管的生长顶端,并为NOX及其活性亚基的有效互作提供了适宜的微环境,由此保证了NOX蛋白产生ROS的较高酶活性,进而维持花粉管的极性顶端生长。 总之,甾醇螯合对白杄花粉管生长影响的研究,为脂筏极化在花粉管极性生长中的作用提供了证据。基于以上生物化学和细胞生物学的结果,我们针对花粉管中富含甾醇的脂筏微区和NOX功能之间的联系,提出了一种假说模式:(1) 植物细胞质膜上的脂筏为信号分子ROS在特定位点的聚集提供了物理载体;(2) 脂筏的完整性和甾醇依赖性对NOX的定位和活性是必要的,并为花粉管细胞极性产生和维持所必需。上述研究结果表明,脂筏在花粉管顶端的极化,以及作为关键生长因子的NOX在质膜脂筏中的定位,对花粉管的高度极性生长具有重要作用。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The formation of ring-shaped structures in an H-shaped block copolymer [a poly(ethylene glycol) backbone with polystyrene branches, i.e., (PS)(2)PEG(PS)(2)] thin film was investigated when it was annealed in saturated PEG-selective acetonitrile vapor. Our results clearly indicate that ring formation is determined by the initial morphology of the spin-coated film, the solvent vapor selectivity and the environmental temperature of the solvent-annealing process. Only the films with the initial core-shell cylindrical structure in strongly PEG-selective acetonitrile vapor could form the ring-shaped structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of binary SB blend samples with various overall volume fraction of PS (Phi(PS)) and different discrete distribution of the block length (denoted as d(PS) or d(PB)) were prepared by mixing various asymmetric poly(styrene)-block-poly(butadiene) (SB) block copolymers with a symmetric SB block copolymer. The influences of the external solvent field, composition, and the block length distribution on the morphologies of the blends in the thin films were investigated by atomic force microscopy (AFM) and transmission electron microscopy (TEM). The experimental results revealed that after solvent annealing, the interface of the blend thin films depended mainly on the cooperative effects of the annealing solvent and the inherently interfacial curvature of the blends. Upon exposure to the saturated vapor of cyclohexane, which has preferential affinity for the PB block, a "threshold" of Phi(PS) (approximate 0.635-0.707) was found. Below such threshold, the influence of the annealing solvent played an important role on the interfacial curvature of the blend thin film.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have systematically studied the thin film morphologies of asymmetric polystyrene-block-poly(ethylene oxide) (PS-b-PEO) diblock copolymer subjected to solvent vapors of varying selectivity for the constituent blocks. Upon a short treatment in neutral or PS-selective vapor, the film exhibited a highly ordered array of hexagonally packed, cylindrical microdomains. In the case of PEO selective vapor annealing, such ordered cylindrical microdomains were not obtained. instead, fractal patterns on the microscale were observed and their growth processes investigated. Furthermore, hierarchical structures could be obtained if the fractal pattern was exposed to neutral or PS selective vapor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previously, an inverted phase (the minority blocks comprising the continuum phase) was found in solution-cast block copolymer thin films. In this study, the effect of casting solvents on the formation of inverted phase has been studied. Two block copolymers, poly(styrene-b-butadiene) (SB) (M-w = 73 930 Da) and poly(styrene-b-butadiene-b-styrene) (SBS) (M-w = 140 000 Da), with comparable block lengths and equal polystyrene (PS) weight fraction (similar to30 wt %) were used. The copolymer thin films were cast from different solvents, toluene, benzene, cyclohexane, and binary mixtures of benzene and cyclohexane. Toluene and benzene are good solvents for both PS and PB, but have a preferential affinity for PS, while cyclohexane is a good solvent for PB but a Theta solvent for PS (T-Theta = 34.5 degreesC). The differential solvent affinity for PS and PB was estimated in terms of a difference between the polymer-solvent interaction parameter, chi, for each block. Under an extremely slow solvent evaporation rate, the time-dependent phase behavior during such a solution-to-film process was examined by freeze-drying the samples at different stages, corresponding to different copolymer concentrations, rho.