112 resultados para MICROCHANNELS
Resumo:
The two-phase flow of a hydrophobic ionic liquid and water was studied in capillaries made of three different materials (two types of Teflon, FEP and Tefzel, and glass) with sizes between 200µm and 270µm. The ionic liquid was 1-butyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}amide, with density and viscosity of 1420kgm and 0.041kgms, respectively. Flow patterns and pressure drop were measured for two inlet configurations (T- and Y-junction), for total flow rates of 0.065-214.9cmh and ionic liquid volume fractions from 0.05 to 0.8. The continuous phase in the glass capillary depended on the fluid that initially filled the channel. When water was introduced first, it became the continuous phase with the ionic liquid forming plugs or a mixture of plugs and drops within it. In the Teflon microchannels, the order that fluids were introduced did not affect the results and the ionic liquid was always the continuous phase. The main patterns observed were annular, plug, and drop flow. Pressure drop in the Teflon microchannels at a constant ionic liquid flow rate, was found to increase as the ionic liquid volume fraction decreased, and was always higher than the single phase ionic liquid value at the same flow rate as in the two-phase mixture. However, in the glass microchannel during plug flow with water as the continuous phase, pressure drop for a constant ionic liquid flow rate was always lower than the single phase ionic liquid value. A modified plug flow pressure drop model using a correlation for film thickness derived for the current fluids pair showed very good agreement with the experimental data. © 2013 Elsevier Ltd.
Resumo:
This paper compares the analytical performance of microchannels fabricated in PDMS, glass, and polyester-toner for electrophoretic separations. Glass and PDMS chips were fabricated using well-established photolithographic and replica-molding procedures, respectively. PDMS channels were sealed against three different types of materials: native PDMS, plasma-oxidized PDMS, and glass. Polyester-toner chips were micromachined by a direct-printing process using an office laser printer. All microchannels were fabricated with similar dimensions according to the limitations of the direct-printing process (width/depth 150 mu m/12 mu m). LIF was employed for detection to rule out any losses in separation efficiency due to the detector configuration. Two fluorescent dyes, coumarin and fluorescein, were used as model analytes. Devices were evaluated for the following parameters related to electrophoretic separations: EOF, heat dissipation, injection reproducibility, separation efficiency, and adsorption to channel wall.
Resumo:
In this work, the analysis of electroosmotic pumping mechanisms in microchannels is performed through the solution of Poisson-Boltzmann and Navier Stokes equations by the Finite Element Method. This approach is combined with a Newton-Raphson iterative scheme, allowing a full treatment of the non-linear Poisson-Boltzmann source term which is normally approximated by linearizations in other methods.
Resumo:
A non-intrusive interferometric measurement technique has been successfully developed to measure fluid compressibility in both gas and liquid phases via refractive index (RI) changes. The technique, consisting of an unfocused laser beam impinging a glass channel, can be used to separate and quantify cell deflection, fluid flow rates, and pressure variations in microchannels. Currently in fields such as microfluidics, pressure and flow rate measurement devices are orders of magnitude larger than the channel cross-sections making direct pressure and fluid flow rate measurements impossible. Due to the non-intrusive nature of this technique, such measurements are now possible, opening the door for a myriad of new scientific research and experimentation. This technique, adapted from the concept of Micro Interferometric Backscatter Detection (MIBD), boasts the ability to provide comparable sensitivities in a variety of channel types and provides quantification capability not previously demonstrated in backscatter detection techniques. Measurement sensitivity depends heavily on experimental parameters such as beam impingement angle, fluid volume, photodetector sensitivity, and a channel’s dimensional tolerances. The current apparatus readily quantifies fluid RI changes of 10-5 refractive index units (RIU) corresponding to pressures of approximately 14 psi and 1 psi in water and air, respectively. MIBD reports detection capability as low as 10-9 RIU and the newly adapted technique has the potential to meet and exceed this limit providing quantification in the place of detection. Specific device sensitivities are discussed and suggestions are provided on how the technique may be refined to provide optimal quantification capabilities based on experimental conditions.
Resumo:
Surface tension forces are significant at millimeter length-scales, causing profoundly different flow morphologies in microchannels than in macroscale flows. The existence and morphology of thin liquid films is particularly relevant for predicting performance and operational stability of devices containing microscale two phase flows. Analytical, computational, and experimental methods previously employed in the study of thin liquid films are discussed. Thicknesses before and after a novel film morphology, referred to as a `shock,' are measured with a novel film thickness measurement technique that uses confocal microscopy. Film thicknesses predicted by previous work are compared to experimental results. Methods for increasing the accuracy of the confocal film thickness measurement technique are discussed.
Resumo:
The existence and morphology, as well as the dynamics of micro-scale gas-liquid interfaces is investigated numerically and experimentally. These studies can be used to assess liquid management issues in microsystems such as PEMFC gas flow channels, and are meant to open new research perspectives in two-phase flow, particularly in film deposition on non-wetting surfaces. For example the critical plug volume data can be used to deliver desired length plugs, or to determine the plug formation frequency. The dynamics of gas-liquid interfaces, of interest for applications involving small passages (e.g. heat exchangers, phase separators and filtration systems), was investigated using high-speed microscopy - a method that also proved useful for the study of film deposition processes. The existence limit for a liquid plug forming in a mixed wetting channel is determined by numerical simulations using Surface Evolver. The plug model simulate actual conditions in the gas flow channels of PEM fuel cells, the wetting of the gas diffusion layer (GDL) side of the channel being different from the wetting of the bipolar plate walls. The minimum plug volume, denoted as critical volume is computed for a series of GDL and bipolar plate wetting properties. Critical volume data is meant to assist in the water management of PEMFC, when corroborated with experimental data. The effect of cross section geometry is assessed by computing the critical volume in square and trapezoidal channels. Droplet simulations show that water can be passively removed from the GDL surface towards the bipolar plate if we take advantage on differing wetting properties between the two surfaces, to possibly avoid the gas transport blockage through the GDL. High speed microscopy was employed in two-phase and film deposition experiments with water in round and square capillary tubes. Periodic interface destabilization was observed and the existence of compression waves in the gas phase is discussed by taking into consideration a naturally occurring convergent-divergent nozzle formed by the flowing liquid phase. The effect of channel geometry and wetting properties was investigated through two-phase water-air flow in square and round microchannels, having three static contact angles of 20, 80 and 105 degrees. Four different flow regimes are observed for a fixed flow rate, this being thought to be caused by the wetting behavior of liquid flowing in the corners as well as the liquid film stability. Film deposition experiments in wetting and non-wetting round microchannels show that a thicker film is deposited for wetting conditions departing from the ideal 0 degrees contact angle. A film thickness dependence with the contact angle theta as well as the Capillary number, in the form h_R ~ Ca^(2/3)/ cos(theta) is inferred from scaling arguments, for contact angles smaller than 36 degrees. Non-wetting film deposition experiments reveal that a film significantly thicker than the wetting Bretherton film is deposited. A hydraulic jump occurs if critical conditions are met, as given by a proposed nondimensional parameter similar to the Froude number. Film thickness correlations are also found by matching the measured and the proposed velocity derived in the shock theory. The surface wetting as well as the presence of the shock cause morphological changes in the Taylor bubble flow.
Resumo:
In this work, electrophoretic preconcentration of protein and peptide samples in microchannels was studied theoretically using the 1D dynamic simulator GENTRANS, and experimentally combined with MS. In all configurations studied, the sample was uniformly distributed throughout the channel before power application, and driving electrodes were used as microchannel ends. In the first part, previously obtained experimental results from carrier-free systems are compared to simulation results, and the effects of atmospheric carbon dioxide and impurities in the sample solution are examined. Simulation provided insight into the dynamics of the transport of all components under the applied electric field and revealed the formation of a pure water zone in the channel center. In the second part, the use of an IEF procedure with simple well defined amphoteric carrier components, i.e. amino acids, for concentration and fractionation of peptides was investigated. By performing simulations a qualitative description of the analyte behavior in this system was obtained. Neurotensin and [Glu1]-Fibrinopeptide B were separated by IEF in microchannels featuring a liquid lid for simple sample handling and placement of the driving electrodes. Component distributions in the channel were detected using MALDI- and nano-ESI-MS and data were in agreement with those obtained by simulation. Dynamic simulations are demonstrated to represent an effective tool to investigate the electrophoretic behavior of all components in the microchannel.
Resumo:
A volume-of-fluid numerical method is used to predict the dynamics of drop formation in an axi-symmetric microfluidic flow-focusing geometry for a liquid-liquid system. The Reynolds numbers and Weber numbers approximate those of a three-dimensional flow in recently published experiments. We compare the predicted drop formation with the experimental results at various flow rates, and discuss the mechanisms of drop formation in this context. Despite the differences in geometry, we find qualitative correspondence between the numerical and experimental results. Both end-pinching and capillary-wave instability are important for droplet break-up at the higher flow rates.
Resumo:
In this paper we examine the effect of contact angle (or surface wettability) on the convective heat transfer coefficient in microchannels. Slip flow, where the fluid velocity at the wall is non-zero, is most likely to occur in microchannels due to its dependence on shear rate or wall shear stress. We show analytically that for a constant pressure drop, the presence of slip increases the Nusselt number. In a microchannel heat exchanger we modified the surface wettability from a contact angle of 20 degrees-120 degrees using thin film coating technology. Apparent slip flow is implied from pressure and flow rate measurements with a departure from classical laminar friction coefficients above a critical shear rate of approximately 10,000 s(-1). The magnitude of this departure is dependant on the contact angle with higher contact angles surfaces exhibiting larger pressure drop decreases. Similarly, the non-dimensional heat flux is found to decrease relative to laminar non-slip theory, and this decrease is also a function of the contact angle. Depending on the contact angle and the wall shear rate, variations in the heat transfer rate exceeding 10% can be expected. Thus the contact angle is an important consideration in the design of micro, and even more so, nano heat exchangers. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Polymeric microdrops of low viscosity, elastic fluids have been generated in T-shaped microfluidic devices using a cross-flow shear-induced drop generation process. Dilute (c/c* similar to 0.5) aqueous solutions of polyethylene oxide (PEO) of various molecular weights (3 x 10(5) -2 x 10(6) g/mol) were used as the drop phase fluids whilst silicone oils (5 mPa s
Resumo:
Microchannels are fabricated into conventional single-mode fibers by femtosecond laser processing and chemical etching. Fabrication limitations imposed by the fiber geometry are highlighted and resolved through a simple technique without compromising fabrication flexibility. A microfluidic fiber device consisting of a 4 μm wide microchannel that intersects the fiber core for refractive index sensing is further demonstrated. © 2006 Optical Society of America.
Resumo:
In-fiber microchannels were fabricated directly in standard single mode fiber using the femtosecond laser inscribe and etch technique. This method of creating in-fiber microchannels offers great versatility since it allows complex three dimensional structures to be inscribed and then etched with hydrofluoric acid. Four in-fiber microchannel designs were experimentally investigated using this technique. Device characteristics were evaluated through monitoring the spectral change while inserting index matching oils into each microchannel - a R.I. sensitivity up to 1.55 dB/RIU was achieved. Furthermore, a simple Fabry-Pérot based refractometer with a R.I. sensitivity of 2.75 nm/RIU was also demonstrated. © 2014 SPIE.
Resumo:
In-fiber microchannels were fabricated directly in standard single mode fiber using the femtosecond laser inscribe and etch technique. This method of creating in-fiber microchannels offers great versatility, since it allows complex three-dimensional structures to be inscribed and then preferentially etched with hydrofluoric acid. In addition, inscription does not require a photosensitive fiber; the modification is induced through nonlinear processes triggered by an ultrashort laser pulse. Four in-fiber microchannel designs were experimentally investigated using this technique - microhole, microslot channel along the core, microslot channel perpendicular to the core and helical channel around the core. Each device design was evaluated through monitoring the optical spectral change while inserting a range of index matching oils into each microchannel; an R.I. sensitivity up to 1.55 dB/RIU was achieved in these initial tests. Furthermore, an all femtosecond laser inscribed Fabry-Pérot-based refractometer with an R.I. sensitivity of 2.75 nm/RIU was also demonstrated. The Fabry-Pérot refractometer was formed by positioning a microchannel between two femtosecond laser inscribed point-by-point fiber Bragg gratings.