136 resultados para MEASLES
Resumo:
As measles virus causes subacute sclerosing panencephalitis and measles inclusion body encephalitis due to its ability to establish human persistent infection, without symptoms for the time between the acute infection and the onset of clinical symptoms, it has been the paradigm for a long term persistent as opposed to chronic infection by an RNA virus. We have reviewed the mechanisms of persistence of the virus and discuss specific mutations associated with CNS infection affecting the matrix and fusion protein genes. These are placed in the context of our current understanding of the viral replication cycle. We also consider the proposed mechanisms of persistence of the virus in replicating cell cultures and conclude that no general mechanistic model can be derived from our current state of knowledge. Finally, we indicate how reverse genetics approaches and the use of mouse models with specific knock-out and knock-in modifications can further our understanding of measles virus persistence.
Resumo:
Aims: Infection of the mouse central nervous system with wild type (WT) and vaccine strains of measles virus (MV) results in lack of clinical signs and limited antigen detection. It is considered that cell entry receptors for these viruses are not present on murine neural cells and infection is restricted at cell entry.
Methods: To examine this hypothesis, virus antigen and caspase 3 expression (for apoptosis) was compared in primary mixed, neural cell cultures infected in vitro or prepared from mice infected intracerebrally with WT, vaccine or rodent neuroadapted viruses. Viral RNA levels were examined in mouse brain by nested and real-time reverse transcriptase polymerase chain reaction.
Results: WT and vaccine strains were demonstrated for the first time to infect murine oligodendrocytes in addition to neurones despite a lack of the known MV cell receptors. Unexpectedly, the percentage of cells positive for viral antigen was higher for WT MV than neuroadapted virus in both in vitro and ex vivo cultures. In the latter the percentage of positive cells increased with time after mouse infection. Viral RNA (total and mRNA) was detected in brain for up to 20 days, while cultures were negative for caspase 3 in WT and vaccine virus infections.
Conclusions: WT and vaccine MV strains can use an endogenous cell entry receptor(s) or alternative virus uptake mechanism in murine neural cells. However, viral replication occurs at a low level and is associated with limited apoptosis. WT MV mouse infection may provide a model for the initial stages of persistent MV human central nervous system infections.
Resumo:
Measles virus (MV) is highly infectious, and has long been thought to enter the host by infecting epithelial cells of the respiratory tract. However, epithelial cells do not express signaling lymphocyte activation molecule (CD150), which is the high-affinity cellular receptor for wild-type MV strains. We have generated a new recombinant MV strain expressing enhanced green fluorescent protein (EGFP), based on a wild-type genotype B3 virus isolate from Khartoum, Sudan (KS). Cynomolgus macaques were infected with a high dose of rMV(KS)EGFP by aerosol inhalation to ensure that the virus could reach the full range of potential target cells throughout the entire respiratory tract. Animals were euthanized 2, 3, 4 or 5 days post-infection (d.p.i., n?=?3 per time point) and infected (EGFP(+)) cells were identified at all four time points, albeit at low levels 2 and 3 d.p.i. At these earliest time points, MV-infected cells were exclusively detected in the lungs by fluorescence microscopy, histopathology and/or virus isolation from broncho-alveolar lavage cells. On 2 d.p.i., EGFP(+) cells were phenotypically typed as large mononuclear cells present in the alveolar lumen or lining the alveolar epithelium. One to two days later, larger clusters of MV-infected cells were detected in bronchus-associated lymphoid tissue (BALT) and in the tracheo-bronchial lymph nodes. From 4 d.p.i. onward, MV-infected cells were detected in peripheral blood and various lymphoid tissues. In spite of the possibility for the aerosolized virus to infect cells and lymphoid tissues of the upper respiratory tract, MV-infected cells were not detected in either the tonsils or the adenoids until after onset of viremia. These data strongly suggest that in our model MV entered the host at the alveolar level by infecting macrophages or dendritic cells, which traffic the virus to BALT or regional lymph nodes, resulting in local amplification and subsequent systemic dissemination by viremia.
Resumo:
The global increase in measles vaccination has resulted in a significant reduction of measles mortality. The standard route of administration for the live-attenuated measles virus (MV) vaccine is subcutaneous injection, although alternative needle-free routes, including aerosol delivery, are under investigation. In vitro, attenuated MV has a much wider tropism than clinical isolates, as it can use both CD46 and CD150 as cellular receptors. To compare the in vivo tropism of attenuated and pathogenic MV, we infected cynomolgus macaques with pathogenic or attenuated recombinant MV expressing enhanced green fluorescent protein (GFP) (strains IC323 and Edmonston, respectively) via the intratracheal or aerosol route. Surprisingly, viral loads and cellular tropism in the lungs were similar for the two viruses regardless of the route of administration, and CD11c-positive cells were identified as the major target population. However, only the pathogenic MV caused significant viremia, which resulted in massive virus replication in B and T lymphocytes in lymphoid tissues and viral dissemination to the skin and the submucosa of respiratory epithelia. Attenuated MV was rarely detected in lymphoid tissues, and when it was, only in isolated infected cells. Following aerosol inhalation, attenuated MV was detected at early time points in the upper respiratory tract, suggesting local virus replication. This contrasts with pathogenic MV, which invaded the upper respiratory tract only after the onset of viremia. This study shows that despite in vitro differences, attenuated and pathogenic MV show highly similar in vivo tropism in the lungs. However, systemic spread of attenuated MV is restricted.
Resumo:
The lymphotropic and myelotropic nature of wild-type measles virus (wt-MV) is well recognized, with dendritic cells and lymphocytes expressing the MV receptor CD150 mediating systemic spread of the virus. Infection of respiratory epithelial cells has long been considered crucial for entry of MV into the body. However, the lack of detectable CD150 on these cells raises the issue of their importance in the pathogenesis of measles. This study utilized a combination of in vitro, ex vivo and in vivo model systems to characterize the susceptibility of epithelial cells to wt-MV of proven pathogenicity. Low numbers of MV-infected epithelial cells in close proximity to underlying infected lymphocytes or myeloid cells suggested infection via the basolateral side of the epithelium in the macaque model. In primary cultures of human bronchial epithelial cells, foci of MV-infected cells were only observed following infection via the basolateral cell surface. The extent of infection in primary cells was enhanced both in vitro and in ex vivo cornea rim tissue by disrupting the integrity of the cells prior to the application of virus. This demonstrated that, whilst epithelial cells may not be the primary target cells for wt-MV, areas of epithelium in which tight junctions are disrupted can become infected using high m.o.i. The low numbers of MV-infected epithelial cells observed in vivo in conjunction with the absence of infectious virus release from infected primary cell cultures suggest that epithelial cells have a peripheral role in MV transmission.
Resumo:
Measles remains a significant childhood disease, and is associated with a transient immune suppression. Paradoxically, measles virus (MV) infection also induces robust MV-specific immune responses. Current hypotheses for the mechanism underlying measles immune suppression focus on functional impairment of lymphocytes or antigen-presenting cells, caused by infection with or exposure to MV. We have generated stable recombinant MVs that express enhanced green fluorescent protein, and remain virulent in non-human primates. By performing a comprehensive study of virological, immunological, hematological and histopathological observations made in animals euthanized at different time points after MV infection, we developed a model explaining measles immune suppression which fits with the "measles paradox". Here we show that MV preferentially infects CD45RA - memory T-lymphocytes and follicular B-lymphocytes, resulting in high infection levels in these populations. After the peak of viremia MV-infected lymphocytes were cleared within days, followed by immune activation and lymph node enlargement. During this period tuberculin-specific T-lymphocyte responses disappeared, whilst strong MV-specific T-lymphocyte responses emerged. Histopathological analysis of lymphoid tissues showed lymphocyte depletion in the B- and T-cell areas in the absence of apoptotic cells, paralleled by infiltration of T-lymphocytes into B-cell follicles and reappearance of proliferating cells. Our findings indicate an immune-mediated clearance of MV-infected CD45RA - memory T-lymphocytes and follicular B-lymphocytes, which causes temporary immunological amnesia. The rapid oligoclonal expansion of MV-specific lymphocytes and bystander cells masks this depletion, explaining the short duration of measles lymphopenia yet long duration of immune suppression. © 2012 de Vries et al.
Resumo:
Small numbers of brain endothelial cells (BECs) are infected in children with neurologic complications of measles virus (MV) infection. This may provide a mechanism for virus entry into the central nervous system, but the mechanisms are unclear. Both in vitro culture systems and animal models are required to elucidate events in the endothelium. We compared the ability of wild-type (WT), vaccine, and rodent-adapted MV strains to infect, replicate, and induce apoptosis in human and murine brain endothelial cells (HBECs and MBECs, respectively). Mice also were infected intracerebrally. All MV stains productively infected HBECs and induced the MV receptor PVRL4. Efficient WT MV production also occurred in MBECs. Extensive monolayer destruction associated with activated caspase 3 staining was observed in HBECs and MBECs, most markedly with WT MV. Tumor necrosis factor–related apoptosis-inducing ligand (TRAIL), but not Fas ligand, was induced by MV infection. Treatment of MBECs with supernatants from MV-infected MBEC cultures with an anti-TRAIL antibody blocked caspase 3 expression and monolayer destruction. TRAIL was also expressed in the endothelium and other cell types in infected murine brains. This is the first demonstration that infection of low numbers of BECs with WT MV allows efficient virus production, induction of TRAIL, and subsequent widespread apoptosis.
Resumo:
The nucleotide sequence encoding the C terminus of the nucleocapsid protein of measles virus (MV) is the most variable in the genome. The sequence of this region is reported for 21 new MV strains and for virus RNA obtained from cases of subacute panencephalitis (SSPE) tissue. The nucleotide sequence of a total of 65 MV strains has been analysed using the CLUSTAL program to determine the relationships between the strains. An unrooted tree shows that eight different genotypes can be discerned amongst the sequences analysed so far. The data show that the C-terminal coding sequence of the nucleocapsid gene, although highly variable between strains, is stable in a given strain and does not appear to diverge in tissue culture. It therefore provides a good 'signature' sequence for specific genotypes. The sequence of this region can be used to discriminate new imported viruses from old 'endemic' strains of MV in a geographical area. The different genotypes are not geographically restricted although some appear to be the mainly 'endemic' types in large areas of the world. In global terms there appears to be at least four co-circulating genotypes of MV. The low level of divergence in the Edmonston lineage group isolated before 1970 indicates that some isolates are probably laboratory contaminants. This applies to some SSPE isolates such as the Halle, Mantooth and Horta-Barbosa strains as well as some wild-type isolates from that period.
Resumo:
Nucleotide sequence analysis was carried out to study genes encoding the matrix (M) protein of measles virus (MV) from several regions of the brain of a case of subacute sclerosing panencephalitis. This analysis revealed the presence of MV with 'wild-type' sequences as well as variants which had undergone at least five biased hypermutation events (U to C and A to G in the positive strand sequences). Despite the presence of MV variants with genes encoding the intact matrix protein open reading frame, M protein could not be detected in any of the brain regions. The distribution of virus variants was studied by cDNA cloning and sequence analysis and by in situ hybridization. The hypermutated viruses appeared to expand clonally throughout the brain of patient B.