996 resultados para MAX PHASE
Resumo:
Foram, conduzidos experimentos de campo com os cultivares Santa Rosa e IAC-2 em dois tipos de solos, Latossol Roxo e Latossol Vermelho Escuro - fase arenosa, no Município, de Jaboticabal (SP), com o objetivo de estudar a influência do período de competição das plantas daninhas sobre algumas características morfológicas relacionadas à produção e composição química dos grãos, na cultura da soja. O delineamento experimental utilizado foi o de blocos ao acaso, sendo os cultivares mantidos sem e com matocompetição por períodos cujas extensões foram 0, 10, 20, 30, 40, 50 e 60 dias após a emergência. Com base nos resultados obtidos, pode-se chegar à conclusão que um período inicial curto (20 a 30 dias) livre da matocompetição, foi suficiente para que não ocorressem efeitos negativos, estatisticamente significativos, na altura final das plantas, no diâmetro do caule e na altura de inserção da vagem mais baixa, além de ser suficiente para que os teores de proteína, extrato-etéreo e cinzas, dos grãos, se mantivessem dentro dos valores normais esperados para os dois cultivares, nos solos estudados.
Resumo:
Visando estudar a influência do período de competição das plantas daninhas sobre alguns parâmetros de produção da cultura da soja, foram instalados experimentos de campo com os cultivares Santa Rosa e IAC-2 em dois tipos de solos, Latossol Roxo e Latossol Vermelho Escuro - fase arenosa, no município de Jaboticabal, Estado de São Paulo, Brasil. O delineamento experimental utilizado foi o de blocos ao acaso , sendo os cultivares mantidos sem e com competição das plantas daninhas por períodos cujas extensões foram 0, 10, 20, 30, 40, 50 e 60 dias após a emergência. Com base nos resultados obtidos, pode-se concluir que: o período mínimo do início do ciclo que deve ser mantido livre de competição é de 30 a 40 dias após a emergência para o cultivar Santa Rosa e de 50 dias para o 'IAC-2'; para os dois cultivares, a produção de grãos foi efetivamente aumentada após o 20.° dia sem competição no solo Latossol Roxo e 30.° dia no solo Latossol Vermelho Escuro - fase arenosa, atingindo um valor máximo no 50.° dia para o 'Santa Rosa' e ao redor do 60.° dia para o 'IAC-2'; no ano agrícola de 1977/78 (solo Latosso l Roxo), a competição durante os primeiros 20 dias após a emergência causou perdas de produção em ambos os cultivares, entretanto, no de 1978/79 (solo Latossol Vermelho Escuro - fase arenosa) este período foi de 40 dias, mostrando a importância das interferências e da foclimáticas e das diferentes espécies daninhas, no processo de competição; e, dentre todos os parâmetros relacionados à produção de grãos, o número de vagens por planta foi o mais afetado pela competição das plantas daninhas.
Resumo:
Foi estudada a possibilidade de redução nas doses recomendadas de herbicidas, isolados ou em misturas, sem afetar algumas características das plantas de soja (Santa Rosa), tais como o acúmulo total de matéria secada parte aérea (caule + ramos, folhas e vagens), índice de Area Foliar (IAF) e teores de macro e micronutrientes (Diagnose Foliar e nos grãos). O experimento foi ins talado em Solo Latos - sol Vermelho Escuro - fase arenosa, município de Jaboticabal, Estado de São Paulo, Brasil. O delineamento experimental foi o de blocos ao acaso, em vinte tratamentos e três repetições, te stando-se a dose total recomendad a e reduções de 25% e 50% de la , para o trifluralin, alachlor e metribuzin, isolados e em misturas. As doses recomendadas foram 0,86; 1,72 e 0,28 kg/ha de trifluralin, alachlor e metribuzin, respectivamente. As 'misturas com doses reduzidas, de tri - fluralin + metribuzin (0 ,6 5 + 0, 21 kg/h a) e alachlor + metribuzin (1 ,4 4 + 0, 21 kg /h a), apresentaram controle geral das plantas daninhas acima de 90% at é o 60 .° dia após a semeadura, sem apresentar fitotoxicida de ou efeitos deletérios nas plantas de soja. Além disso apresenta ram os melhores resultados relativos ao acúmulo de matéria seca na parte aérea, juntamente com as mesmas misturas nas doses padrões e testemunha capinada. A absorção de nutrientes também sempre foi maior nestes tratamentos , com maiores teores nas folhas, na matéria seca geral e nos grãos. O IAF alto e a sua manutenção por um período maior, nestes tratamentos, podem ter tido influência decisiva, com maior eficiência fotossintética das plantas.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The high performance liquid chromatography (HPLC) technique was applied to measure phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) activity in soybean (Glycine max L. Merril cv. BR16) roots. t-Cinnamate, the catalytic product of the PAL reaction was quantified at 275 nm by isocratic elution with methanol:water through an ODS(M) column. Comparative experiments were carried out with 1.0 mM ferulic acid, an inducer of PAL activity. The results suggest that liquid chromatography is a rapid and sensitive method to analyze PAL activity in non-purified extract.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In order to investigate the effect on the aqueous solubility and release rate of sulfamerazine (SMR) as model drug, inclusion complexes with beta-cyclodextrin (beta CD), methyl-beta-cyclodextrin (M beta CD) and hydroxypropyl-beta-cyclodextrin (HP beta CD) and a binary system with meglumine (MEG) were developed. The formation of 1: 1 inclusion complexes of SMR with the CDs and a SMR: MEG binary system in solution and in solid state was revealed by phase solubility studies (PSS), nuclear magnetic resonance (NMR), Fourier-transform infrared spectroscopy (FT-IR), thermal analysis and X-Ray diffractometry (XRD) studies. The CDs solubilization of SMR could be improved by ionization of the drug molecule through pH adjustments. The higher apparent stability constants of SMR:CDs complexes were obtained in pH 2.00, demonstrating that CDs present more affinity for the unionized drug. The best approach for SMR solubility enhancement results from the combination of MEG and pH adjustment, with a 34-fold increment and a S-max of 54.8 mg/ml. The permeability of the drug was reduced due to the presence of beta CD, M beta CD, HP beta CD and MEG when used as solubilizers. The study then suggests interesting applications of CD or MEG complexes for modulating the release rate of SMR through semipermeable membranes.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Lodenafil carbonate is a new phosphodiesterase Type 5 (PDE5) inhibitor used in treatment of erectile dysfunction. Objective: The present study was conducted to evaluate the safety, tolerability, and pharmacokinetics of lodenafil carbonate after administering ascending (1 - 100 mg) single oral doses to healthy male volunteers (n = 33). Methods: The study was an open-label, dose-escalation, Phase I clinical trial involving the administration of single oral doses of lodenafil carbonate. Lodenafil carbonate was administered sequentially, escalating in single doses of 1 mg - 100 mg with a washout period of at least 1 week between each dose. The progression to the next dose was allowed after clinical and laboratory exams, Ambulatory Monitoring of Arterial Pressure (AMAP) without relevant clinical modifications and adverse events without clinical relevancy. Blood samples were collected at pre-dose, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.5, 3, 3.5, 4, 4.5, 5, 6, 7, 8, 10, 12, 14, 16, 20 and 24 h post-dosing. Plasma samples for measurement of lodenafil carbonate and lodenafil were analyzed by liquid chromatography coupled to tandem mass spectrometry. Results: No serious adverse events were observed, and none of the subjects discontinued the study due to intolerance. The AMAP measurements, clinical and laboratory exams and ECG revealed no significant changes even at higher doses. Lodenafil carbonate was not detected in any samples, indicating that it acts as a prodrug. The mean lodenafil pharmacokinetic parameters for t(max) and t(1/2) were 1.6 (+/- 0.4) h and 3.3 (+/- 1.1) h, respectively. This study demonstrated that lodenafil carbonate was well tolerated and showed a good safety profile in healthy male volunteers.
Resumo:
This phase II trial investigated rituximab and cladribine in chronic lymphocytic leukemia. Four induction cycles, comprising cladribine (0.1 mg/kg/day days 1-5, cycles 1-4) and rituximab (375 mg/m(2) day 1, cycles 2-4), were given every 28 days. Stem cell mobilization (rituximab 375 mg/m(2) days 1 and 8; cyclophosphamide 4 g/m(2) day 2; and granulocyte colony-stimulating factor 10 microg/kg/day, from day 4) was performed in responders. Of 42 patients, nine achieved complete remission (CR), 15 very good partial remission, and two nodular partial remission (overall response rate 62%). Stem cell mobilization and harvesting (> or = 2 x 10(6) stem cells/kg body weight) were successful in 12 of 20 patients. Rituximab infusion-related adverse events were moderate. The main grade 3/4 adverse events during induction were neutropenia and lymphocytopenia. Rituximab plus cladribine was effective; however, the CR rate was modest and stem cell harvest was impaired in a large number of responding patients.
Total nitrogen from solid phase in the Jena Experiment (Main Experiment up to 30cm depth, year 2008)
Resumo:
This data set contains measurements of total nitrogen from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Soil sampling and analysis: Stratified soil sampling was performed in April 2008 to a depth of 30 cm. Three independent samples per plot were taken using a split tube sampler with an inner diameter of 4.8 cm (Eijkelkamp Agrisearch Equipment, Giesbeek, the Netherlands). Soil samples were segmented to a depth resolution of 5 cm in the field, giving six depth subsamples per core, and made into composite samples per depth. Sampling locations were less than 30 cm apart from sampling locations in other years. Samples were dried at 40°C. All soil samples were passed through a sieve with a mesh size of 2 mm. Because of much higher proportions of roots in the soil, the samples were further sieved to 1 mm according to common root removal methods. No additional mineral particles were removed by this procedure. Total nitrogen concentration was analyzed on ball-milled subsamples (time 4 min, frequency 30 s-1) by an elemental analyzer at 1150°C (Elementaranalysator vario Max CN; Elementar Analysensysteme GmbH, Hanau, Germany).
Resumo:
This data set contains measurements of total nitrogen from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Soil sampling and analysis: Stratified soil sampling to a depth of 1m was performed before sowing in April 2002. Three independent samples per plot were taken of all plots in block 2 using a motor-driven soil column cylinder (Cobra, Eijkelkamp, 8.3 cm in diameter). Soil samples were dried at 40°C and segmented to a depth resolution of 5 cm giving 20 depth subsamples per core. All samples were analyzed independently. All soil samples were passed through a sieve with a mesh size of 2 mm. Rarely present visible plant remains were removed using tweezers. Total nitrogen concentration was analyzed on ball-milled subsamples (time 4 min, frequency 30 s-1) by an elemental analyzer at 1150°C (Elementaranalysator vario Max CN; Elementar Analysensysteme GmbH, Hanau, Germany).
Total nitrogen from solid phase in the Jena Experiment (Main Experiment up to 30cm depth, year 2004)
Resumo:
This data set contains measurements of total nitrogen from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Soil sampling and analysis: Stratified soil sampling was performed in April 2004 to a depth of 30 cm. Three independent samples per plot were taken using a split tube sampler with an inner diameter of 4.8 cm (Eijkelkamp Agrisearch Equipment, Giesbeek, the Netherlands). Soil samples were segmented to a depth resolution of 5 cm in the field, giving six depth subsamples per core, and made into composite samples per depth. Sampling locations were less than 30 cm apart from sampling locations in other years. Samples were dried at 40°C. All soil samples were passed through a sieve with a mesh size of 2 mm. Because of much higher proportions of roots in the soil, the samples were further sieved to 1 mm according to common root removal methods. No additional mineral particles were removed by this procedure. Total nitrogen concentration was analyzed on ball-milled subsamples (time 4 min, frequency 30 s-1) by an elemental analyzer at 1150°C (Elementaranalysator vario Max CN; Elementar Analysensysteme GmbH, Hanau, Germany).
Resumo:
The sampling area was extended to the Western-South area off the Black Sea coast from Kaliakra cape toward the Bosforous. Samples were collected along four transects. The whole dataset is composed of 17 samples (from 10 stations) with data of mesozooplankton species composition abundance and biomass. Sampling for zooplankton was performed from bottom up to the surface at depths depending on water column stratification and the thermocline depth. These data are organized in the "Control of eutrophication, hazardous substances and related measures for rehabilitating the Black Sea ecosystem: Phase 2: Leg I: PIMS 3065". Data Report is not published. Zooplankton samples were collected with vertical closing Juday net,diameter - 36cm, mesh size 150 µm. Tows were performed from surface down to bottom meters depths in discrete layers. Samples were preserved by a 4% formaldehyde sea water buffered solution. Sampling volume was estimated by multiplying the mouth area with the wire length. Mesozooplankton abundance: The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Kremena Stefanova using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972). Taxon-specific abundance: The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Copepods and Cladoceras were identified and enumerated; the other mesozooplankters were identified and enumerated at higher taxonomic level (commonly named as mesozooplankton groups). Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Kremena Stefanova using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972).