981 resultados para MASSIVE SCALAR FIELD
Squeezed Coherent State Representation of Scalar Field and Particle Production in the Early Universe
Resumo:
The present work is an attempt to explain particle production in the early univese. We argue that nonzero values of the stress-energy tensor evaluated in squeezed vacuum state can be due to particle production and this supports the concept of particle production from zero-point quantum fluctuations. In the present calculation we use the squeezed coherent state introduced by Fan and Xiao [7]. The vacuum expectation values of stressenergy tensor defined prior to any dynamics in the background gravitational field give all information about particle production. Squeezing of the vacuum is achieved by means of the background gravitational field, which plays the role of a parametric amplifier [8]. The present calculation shows that the vacuum expectation value of the energy density and pressure contain terms in addition to the classical zero-point energy terms. The calculation of the particle production probability shows that the probability increases as the squeezing parameter increases, reaches a maximum value, and then decreases.
Resumo:
We found quasinormal modes, both in time and frequency domains, of the Ernst black holes, that is neutral black holes immersed in an external magnetic field. The Ernst solution reduces to the Schwarzschild solution, when the magnetic field vanishes. It is found that the quasinormal spectrum for massless scalar field in the vicinity of the magnetized black holes acquires an effective ""mass"" mu = 2B vertical bar m vertical bar, where m is the azimuthal number and B is parameter describing the magnetic field. We shall show that in the presence of a magnetic field quasinormal modes are longer lived and have larger oscillation frequencies. The perturbations of higher-dimensional magnetized black holes by Ortaggio and of magnetized dilaton black holes by Radu are considered. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
We discuss the phi(6) theory defined in D=2+1-dimensional space-time and assume that the system is in equilibrium with a thermal bath at temperature beta(-1). We use the 1/N expansion and the method of the composite operator (Cornwall, Jackiw, and Tomboulis) for summing a large set of Feynman graphs. We demonstrate explicitly the Coleman-Mermin-Wagner theorem at finite temperature.
Resumo:
We introduce a master action in non-commutative space, out of which we obtain the action of the non-commutative Maxwell-Chern-Simons theory. Then, we look for the corresponding dual theory at both first and second order in the non-commutative parameter. At the first order, the dual theory happens to be, precisely, the action obtained from the usual commutative self-dual model by generalizing the Chern-Simons term to its non-commutative version, including a cubic term. Since this resulting theory is also equivalent to the non-commutative massive Thirring model in the large fermion mass limit, we remove, as a byproduct, the obstacles arising in the generalization to non-commutative space, and to the first non-trivial order in the non-commutative parameter, of the bosonization in three dimensions. Then, performing calculations at the second order in the non-commutative parameter, we explicitly compute a new dual theory which differs from the non-commutative self-dual model and, further, differs also from other previous results and involves a very simple expression in terms of ordinary fields. In addition, a remarkable feature of our results is that the dual theory is local, unlike what happens in the non-Abelian, but commutative case. We also conclude that the generalization to non-commutative space of bosonization in three dimensions is possible only when considering the first non-trivial corrections over ordinary space.
Resumo:
We discuss the phi(6) theory defined in D = 2 + 1-dimensional space-time and assume that the system is in equilibrium with a thermal bath at temperature beta(-1). We use the 1/N expansion and the method of composite operator (CJT) for summing a large set of Feynman graphs. We demonstrate explicitly the Coleman-Mermin-Wagner theorem at finite temperature.
Resumo:
We study the behavior of the renormalized sextic coupling at the intermediate and strong coupling regime for the phi(4) theory defined in d = 2 dimensions. We found a good agreement with the results obtained by the field-theoretical renormalization-group in the Ising limit. In this work we use the lattice regularization method.
Resumo:
In this work we show how to define the action of a scalar field such that the Robin boundary condition is implemented dynamically, i.e. as a consequence of the stationary action principle. We discuss the quantization of that system via functional integration. Using this formalism, we derive an expression for the Casimir energy of a massless scalar field under Robin boundary conditions on a pair of parallel plates, characterized by constants c(1) and c(2). Some special cases are discussed; in particular, we show that for some values of cl and c(2) the Casimir energy as a function of the distance between the plates presents a minimum. We also discuss the renormalization at one-loop order of the two-point Green function in the philambda(4) theory subject to the Robin boundary condition on a plate.
Resumo:
We analyze the presence of a scalar field around a spherically symmetric distribution of an ordinary matter, obtaining an exact solution for a given scalar field distribution.
Resumo:
A comparative study between the metric and the teleparallel descriptions of gravitation is made for the case of a scalar field. In contrast to the current belief that only spin matter could detect the teleparallel geometry, scalar matter being able to feel the metric geometry only, we show that a scalar field is able not only to feel anyone of these geometries, but also to produce torsion. Furthermore, both descriptions are found to be completely equivalent, which means that in fact, besides coupling to curvature, a scalar field couples also to torsion.
Resumo:
We quantize the low-energy sector of a massless scalar field in Reissner-Nordström spacetime. This allows the analysis of processes involving soft scalar particles occurring outside charged black holes. In particular, we compute the response of a static scalar source interacting with Hawking radiation using the Unruh (and the Hartle-Hawking) vacuum. This response is compared with the one obtained when the source is uniformly accelerated in the usual vacuum of Minkowski spacetime with the same proper acceleration. We show that both responses are in general different in opposition to the result obtained when the Reissner-Nordström black hole is replaced by a Schwarzschild one. The conceptual relevance of this result is commented on. ©2000 The American Physical Society.
Resumo:
We investigate the effects of light-cone fluctuations over the renormalized vacuum expectation value of the stress-energy tensor of a real massless minimally coupled scalar field defined in a (d+1)-dimensional flat space-time with topology R×Td. For modeling the influence of light-cone fluctuations over the quantum field, we consider a random Klein-Gordon equation. We study the case of centered Gaussian processes. After taking into account all the realizations of the random processes, we present the correction caused by random fluctuations. The averaged renormalized vacuum expectation value of the stress-energy associated with the scalar field is presented. © 2013 World Scientific Publishing Company.
Resumo:
Using 2-body trees on a flat space background, it is shown that the actions A[g, φ] = (Latin small letter esh) d4x√-g [(R/2K) + (1/2)(gμν ∂μφ∂νφ + λRφ2)] and Ā[ḡ, φ̄] = (Latin small letter esh) d4x√ - ḡ [(R̄/2k) + (1/2) ḡμν∂μφ̄∂ νφ] describe the same theory at the tree-level in this case. We also demonstrate the quantum equivalence (at one-loop) of the barred and unbarred systems for λ == -1/6 (conformal coupling).
Resumo:
The conditions under which cosmologies driven by time-varying cosmological terms can be described by a scalar field coupled to a perfect fluid are discussed. An algorithm to reconstruct potentials dynamically and thermodynamically analogous to given phenomenological λ models is presented. As a working example, the deflationary cosmology which evolves from a pure de Sitter vacuum state to a slightly modified Friedmann-Robertson-Walker cosmology is considered. It is found that this is an example of nonsingular warm inflation with an asymptotic exponential potential. Differences with respect to other scalar field descriptions of decaying vacuum cosmologies are addressed and possible extensions are indicated.
Resumo:
We investigate theoretical and observational aspects of a time-dependent parameterization for the dark energy equation of state w(z), which is a well behaved function of the redshift z over the entire cosmological evolution, i.e., z is an element of [-1, infinity). By using a theoretical algorithm of constructing the quintes-sence potential directly from the w(z) function, we derive and discuss the general features of the resulting potential for the cases in which dark energy is separately conserved and when it is coupled to dark matter. Since the parameterization here discussed allows us to divide the parametric plane in defined regions associated to distinct classes of dark energy models, we use some of the most recent observations from type Ia supernovae, baryon acoustic oscillation peak and Cosmic Microwave Background shift parameter to check which class is observationally preferred. We show that the largest portion of the confidence contours lies into the region corresponding to a possible crossing of the so-called phantom divide line at some point of the cosmic evolution.
Resumo:
We construct a consistent theory of a quantum massive Weyl field. We start with the formulation of the classical field theory approach for the description of massive Weyl fields. It is demonstrated that the standard Lagrange formalism cannot be applied for the studies of massive first-quantized Weyl spinors. Nevertheless we show that the classical field theory description of massive Weyl fields can be implemented in frames of the Hamilton formalism or using the extended Lagrange formalism. Then we carry out a canonical quantization of the system. The independent ways for the quantization of a massive Weyl field are discussed. We also compare our results with the previous approaches for the treatment of massive Weyl spinors. Finally the new interpretation of the Majorana condition is proposed.