164 resultados para MARCASITE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A felsic volcanic series (605-825 mbsf) overlain by upper Eocene shallow-water sediments (500-605 mbsf) and basalticandesitic sills that intruded into sediments of Holocene to Miocene age (0-500 mbsf) was drilled in the forearc region of the Lau Basin at a water depth of 4810 m. The volcanic sequence at Site 841 includes altered and mineralized calc-alkaline rhyolites and dacites, dacitic tuffs, lapilli tuffs, flow breccias, and welded tuffs. These rocks formed subaerially or in a very shallow-water environment suffering a subsidence of >5000 m since Eocene times. Calculations of gains and losses of the major components during alteration show most pronounced changes in the uppermost 70 m of the volcanic sequence. Here, Al, Fe, Mg, and K are enriched, whereas Si and Na are strongly depleted. Illite, vermiculite, chlorite, and hematite predominate in this part of the hole. Throughout the section, quartz, plagioclase, kaolinite, and calcite are present. Sulfide mineralization (up to 10 vol%) consisting mainly of disseminated pyrite (with minor pyrrhotite inclusions) and marcasite together with minor amounts of chalcopyrite is pervasive throughout. Locally, a few sulfide-bearing quartz-carbonate veins as well as Ti-amphibole replacement by rutile and then by pyrite were observed. Strong variations in the As content of sulfides (from 0 to 0.69 wt%) from the same depth interval and local enrichments of Co, Ni, and Cu in pyrite are interpreted to result from fluctuations in fluid composition. Calculations of oxygen and sulfur fugacities indicate that fO2 and fS2 were high at the top and lower at the bottom of the sequence. Sulfur isotope determinations on separated pyrite grains from two samples give d34S values of +6.4ë and +8.4ë, which are close to those reported from Kuroko and Okinawa Trough massive sulfide deposits and calc-alkaline volcanic rocks of the Japanese Ryukyu Island Arc. Calculated chlorite formation temperatures of 265°-290°C at the top of the sequence are consistent with minimum formation temperatures of fluid inclusions in secondary quartz, revealing a narrow range of 270°-297°C. Chlorite formation temperatures are constant downhole and do not exceed 300°C. The presence of marcasite and 4C-type pyrrhotite indicates a formation temperature of <= 250°C. At a later stage, illite was formed at the top of the volcanic series at temperatures well below 200°C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Core recovered from Hess Rise contains concentrations of pyrite, marcasite, and barite in the lowermost meter of limestone (Unit II) and in the brecciated upper part of the underlying volcanic basement (Unit HI). Petrographic and chemical data indicate that the sulfide-barite assemblage in the limestone is mainly a product of low-temperature diagenetic processes. The iron-sulfide phases are biogenic and their concentrations mark the diffusion of sea water sulfate through sedimentary horizons containing abundant organic matter and mafic, glassy volcanogenic detritus. There is some evidence, however, that elevated temperatures augmented or intensified the synsedimentary diagenetic process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Primary sulfide mineralization in basalts of the Costa Rica Rift occurs mainly in chrome-spinel-bearing olivine tholeiites. Primary sulfides form both globules, consisting of quenched single-phase solid solutions, and irregular polymineralic segregations of pyrrhotite, chalcopyrite, cubanite, and pentlandite. Two types of sulfide solid solutions - iron-nickel (Mss) and iron-copper (Iss) - were found among sulfide globules. These types appear to have formed because of sulfide-sulfide liquid immiscibility in the host magmas; as proved by the presence of globules with a distinct phase boundary between Mss and Iss. Such two-phase globules are associated with large olivine phenocrysts. Inhomogeneties among the globule composition likewise are caused by sulfide-sulfide immiscibility. Secondary sulfides form irregular segregations and veins consisting of pyrite, marcasite, and chalcopyrite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Snake Pit massive sulfide fragments and friable, unconsolidated material recovered during ODP Leg 106, isocubanite and pyrite are generally the predominant phases, followed by marcasite, chalcopyrite, sphalerite, and pyrrhotite. Detailed analyses of paragenetic relations of minerals indicate that isocubanite first precipitated together with pyrrhotite. With decreasing temperature, chalcopyrite and sphalerite precipitated, and at the latest stage colloform sphalerite-pyrite (or colloform marcasite) formed. Isocubanite usually has exsolution lamellae of chalcopyrite and less commonly of pyrrhotite. The average bulk chemical composition of the friable, unconsolidated material indicates that it is rich in copper, reflecting the dominance of isocubanite in the specimens, and is characterized by high Co, low Pb, and Ag contents. Sulfur isotope ratios are very uniform, ranging in d34S from +1.2 to +2.8 per mil. The obtained values are apparently low, compared to those for the eastern Pacific sulfide samples, reflecting a smaller contribution of seawater sulfate in the Snake Pit sulfide deposit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The book is devoted to investigations of benthic fauna and geology of the Southern Atlantic Ocean. These works have been carried out in terms of exploring biological structure of the ocean and are of great importance for development of this fundamental problem. They are based on material collected during Cruise 43 of R/V Akademik Kurchatov in 1985-1986 and Cruise 43 of R/V Dmitry Mendeleev in 1989. Problems of quantitative distribution, group composition and trophic structure of benthos in the Southern Scotia Sea, along the east-west Transatlantic section along 31°30'S, and offshore Namibia in the area of the Benguela upwelling are under consideration in the book. Authors present new data on fauna of several groups of deep-sea bottom animals and their zoogeography. Much attention is paid to analysis of morphological structure of the Scotia Sea floor considered in terms of plate tectonics. Bottom sediments along the Transatlantic section and facial variation of sediments in the area of South Shetland Islands and of the continental margin of Namibia are under consideration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Snake Pit active hydrothermal field was discovered at 23°22'N on the Mid-Atlantic Ridge during ODP Leg 106. Among the ten holes drilled in the mound at the foot of an active chimney, only three (649B, 649F, and 649G) had substantial recovery, and produced cores of unconsolidated hydrothermal deposit made up of porous sulfide fragments with minor talc pellets and biological debris, and a few pieces of brassy massive sulfides. Eight representative samples from the 6.5-m-long core from Hole 649B were analyzed for bulk chemistry, both by XRF (major elements) and NAA (trace elements). Major elements average compositions show high Fe (36 wt%), S (37 wt%), and Cu (12 wt%) contents, and minor Zn (6.7 wt%), reflecting a mostly high-temperature deposit. Trace elements are characterized by a high Au content (600 ppb) which could express the maturity of the mound. Mineralogical assemblages show evidence of sequential precipitation, and absence of equilibrium. Major sulfide phases are pyrrhotite, pyrite, Fe, Cu sulfides, marcasite, and sphalerite. Three types of samples are distinguished on the basis of textures and mineral assemblages: type 1, rich in pyrrhotite, with approximately equivalent amounts of Cu, Fe sulfides, and sphalerite and minor pyrite; type 2, rich in Cu, Fe sulfides, which are cubic cubanite with exsolutions and rims of chalcopyrite; and type 3, essentially made up of sphalerite. Type 2 samples likely represent fragments of the inner chimney wall. The presence of talc intergrown with cubic cubanite/chalcopyrite in one big piece from Hole 649G is probably related to mixing of the hydrothermal fluid with seawater.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Primary sulfides from cores of ODP Holes 158-957M, 158-957C, and 158-957H on the active TAG hydrothermal mound (Mid-Atlantic Ridge, 26°08'N) have been studied for concentrations of several chemical elements. Based on 262 microprobe analyses it has been found that the sulfides have extremely heterogeneous distribution of noble metals (Au, Ag, Pt, and Pd) and several associated elements (Hg, Co, and Se). Noble metals are arranged in the following order in terms of decreasing abundance, i.e. concentration level above detection limits (the number of analyses containing a specific element is given in parentheses): Au (65), Ag (46), Pt (21), and Pd (traces). The associated trace elements have the following series: Co (202), Hg (132), and Se (49). The main carriers of "invisible" portion of the noble metals are represented by pyrite (Au, Hg), marcasite and pyrite (Ag, Co), sphalerite and chalcopyrite (Pt, Pd), and chalcopyrite (Se). Noble metal distribution in sulfides reveals a lateral zonality: maximal concentrations and abundance of Au in chalcopyrite (or Pt and Ag in chalcopyrite and pyrite) increase from the periphery (Hole 957H) to the center (holes 957C and 957M) of the hydrothermal mound, while Au distribution in pyrite displays a reversed pattern. Co concentration increases with depth. Vertical zonality in distribution of the elements mentioned above and their response to evolution of ore genesis are under discussion in the paper.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Depth fluctuations of the lysocline and calcite compensation depth (CCD) through time were investigated at Deep Sea Drilling Project Site 603, Leg 93. The CCD fell during the middle Miocene at the onset of the Western Boundary Undercurrent, correlated with seismic Horizon X. Subsequently deposited units show fluctuations of the dissolution curve. Major changes in dissolution facies correspond with lithologic boundaries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This petrological study of the lower Aptian Oceanic Anoxic Event (OAE1a) focused on the nature of the organic-rich interval as well as the tuffaceous units above and below it. The volcaniclastic debris deposited just prior to the OAE1a is consistent with reactivation of volcanic centers across the Shatsky Rise, concurrent with volcanism on the Ontong Java Plateau. This reactivation may have been responsible for the sub-OAE1a unconformity. Soon after this volcanic pulse, anomalous amounts of organic matter accumulated on the rise, forming a black shale horizon. The complex textures in the organic-rich intervals suggest a history of periodic anoxia, overprinted by bioturbation. Components include pellets, radiolarians, and fish debris. The presence of carbonate-cemented radiolarite under the OAE1a intervals suggests that there has been large-scale remobilization of carbonate in the system, which in turn may explain the absence of calcareous microfossils in the section. The volcanic debris in the overlying tuffaceous interval differs in that it is significantly epiclastic and glauconitic. It was likely derived from an emergent volcanic edifice.