954 resultados para MAIZE YIELD


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The success of the intercropping among cultivated species depends on the adoption of practices that provide, in due course, greater competitive ability of a species over another. The objective of this study was to evaluate the use of glyphosate herbicide in the suppression of Brachiaria (signalgrass) intercropped with maize. The experiment was conducted in a randomized complete block design with four replications. The treatments were arranged in a 5 x 2 + 2 factorial arrangement, the first factor corresponding to the doses of glyphosate (48, 96, 144, 240, 480 g ha-1 of the acid equivalent (a.e)) and the second one to the vegetative stages of the signalgrass at the time of application (2 and 4 tillers). Two controls were added to the treatment list, comprising controls without herbicide application and hand removal of the signalgrass. The number of plants, tillers and dry matter of signalgrass was reduced with glyphosate. The increase of the glyphosate doses enhanced the injure to the forage plants, mainly when the compound was sprayed at the two-tiller vegetative stage. The dry matter of maize plants increased proportionally to the glyphosate dose. However, the height of the maize plants was not affected. The grain mass and productivity of maize grain increased with increasing dose of glyphosate. The maize yield was negatively influenced on the untreated control. Glyphosate at 96 and 144 g ha-1, when applied at 2 and 4 tiller stage, respectively, reduces the growth of signalgrass and does not affect the maize grain yield.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Maize production in smallholder farming systems in Kenya is largely limited by low soil fertility. As mineral fertilizer is expensive, green manuring using leguminous cover crops could be an alternative strategy for farmers to enhance farm productivity. However due to variability in soil type and crop management, the effects of green manure are likely to differ with farms. The objectives of this study were to evaluate Mucuna pruriens and Arachis pintoi on (i) biomass and nitrogen fixation (^15N natural abundance), (ii) soil carbon and nitrogen stocks and (iii) their effects on maize yields over two cropping seasons in Kakamega, Western Kenya. Mucuna at 6 weeks accumulated 1–1.3 Mg ha^{-1} of dry matter and 33–56 kg ha^{-1} nitrogen of which 70% was nitrogen derived from the atmosphere (Ndfa). Arachis after 12 months accumulated 2–2.7 Mg ha^{-1} of dry matter and 51–74 kg N ha^{-1} of which 52-63 % was from Ndfa. Soil carbon and nitrogen stocks at 0–15 cm depth were enhanced by 2-4 Mg C ha^{-1} and 0.3–1.0 Mg N ha^{-1} under Mucuna and Arachis fallow, irrespective of soil type. Maize yield increased by 0.5-2 Mg ha^{-1} in Mucuna and 0.5–3 Mg ha^{-1} in Arachis and the response was stronger on Nitisol than on Acrisol or Ferralsol. We concluded that leguminous cover crops seem promising in enhancing soil fertility and maize yields in Kenya, provided soil conditions and rainfall are suitable.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Improved crop yield forecasts could enable more effective adaptation to climate variability and change. Here, we explore how to combine historical observations of crop yields and weather with climate model simulations to produce crop yield projections for decision relevant timescales. Firstly, the effects on historical crop yields of improved technology, precipitation and daily maximum temperatures are modelled empirically, accounting for a nonlinear technology trend and interactions between temperature and precipitation, and applied specifically for a case study of maize in France. The relative importance of precipitation variability for maize yields in France has decreased significantly since the 1960s, likely due to increased irrigation. In addition, heat stress is found to be as important for yield as precipitation since around 2000. A significant reduction in maize yield is found for each day with a maximum temperature above 32 °C, in broad agreement with previous estimates. The recent increase in such hot days has likely contributed to the observed yield stagnation. Furthermore, a general method for producing near-term crop yield projections, based on climate model simulations, is developed and utilized. We use projections of future daily maximum temperatures to assess the likely change in yields due to variations in climate. Importantly, we calibrate the climate model projections using observed data to ensure both reliable temperature mean and daily variability characteristics, and demonstrate that these methods work using retrospective predictions. We conclude that, to offset the projected increased daily maximum temperatures over France, improved technology will need to increase base level yields by 12% to be confident about maintaining current levels of yield for the period 2016–2035; the current rate of yield technology increase is not sufficient to meet this target.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Climate projections indicate that rising temperatures will affect summer crops in the southern Iberian Peninsula. The aim of this study was to obtain projections of the impacts of rising temperatures, and of higher frequency of extreme events on irrigated maize, and to evaluate some adaptation strategies. The study was conducted at several locations in Andalusia using the CERES-Maize crop model, previously calibrated/validated with local experimental datasets. The simulated climate consisted of projections from regional climate models from the ENSEMBLES project; these were corrected for daily temperature and precipitation with regard to the E-OBS observational dataset. These bias-corrected projections were used with the CERES-Maize model to generate future impacts. Crop model results showed a decrease in maize yield by the end of the 21st century from 6 to 20%, a decrease of up to 25% in irrigation water requirements, and an increase in irrigation water productivity of up to 22%, due to earlier maturity dates and stomatal closure caused by CO2 increase. When adaptation strategies combining earlier sowing dates and cultivar changes were considered, impacts were compensated, and maize yield increased up to 14%, compared with the baseline period (1981-2010), with similar reductions in crop irrigation water requirements. Effects of extreme maximum temperatures rose to 40% at the end of the 21st century, compared with the baseline. Adaptation resulted in an overall reduction in extreme Tmax damages in all locations, with the exception of Granada, where losses were limited to 8%.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In Brazil, off-season rainfed maize is usually affected by limited water due to irregularities in rainfall. Alternatives to mitigate these effects include ground cover to reduce evaporation losses and the use of cultivars with a deeper rooting system. We conducted a study in Goias, Brazil, to evaluate the influence of different crop management strategies to mitigate the effect of limited water in maize yield. Modeling was used to simulate scenarios that consisted of 0, 3.5 and 5.0 t ha-1 of soybean residue left on the soil surface combined with cultivar ideotypes with 0.30 m, 0.50 m 0.70 m deep rooting system grown with 60 and 340 kg ha-1of nitrogen. The results showed that maintaining residue in the soil surface in combination with the use of cultivars with deeper rooting systems favored higher yields of off-season maize. Our results also indicated that a cultivar with rooting system in the top 0.50 m of the soil fertilized with a high nitrogen rate tended to be more efficient in the use of the soil available water

Relevância:

60.00% 60.00%

Publicador:

Resumo:

No-tillage mulch-based (NTM) cropping systems have been widely adopted by farmers in the Brazilian savanna region (Cerrado biome). We hypothesized that this new type of management should have a profound impact on soil organic carbon (SOC) at regional scale and consequently on climate change mitigation. The objective of this study was thus to quantify the SOC storage potential of NTM in the oxisols of the Cerrado using a synchronic approach that is based on a chronosequence of fields of different years under NTM. The study consisted of three phases: (1) a farm/cropping system survey to identify the main types of NTM systems to be chosen for the chronosequence; (2) a field survey to identify a homogeneous set of situations for the chronosequence and (3) the characterization of the chronosequence to assess the SOC storage potential. The main NTM system practiced by farmers is an annual succession of soybean (Glycine max)or maize (Zea mays) with another cereal crop. This cropping system covers 54% of the total cultivated area in the region. At the regional level, soil organic C concentrations from NTM fields were closely correlated with clay + silt content of the soil (r(2) = 0.64). No significant correlation was observed (r(2) = 0.07), however, between these two variables when we only considered the fields with a clay + silt content in the 500-700 g kg(-1) range. The final chronosequence of NTM fields was therefore based on a subsample of eight fields, within this textural range. The SOC stocks in the 0-30 cm topsoil layer of these selected fields varied between 4.2 and 6.7 kg C m(-2) and increased on average (r(2) = 0.97) with 0.19 kg C m(-2) year(-1). After 12 years of NTM management, SOC stocks were no longer significantly different from the stocks under natural Cerrado vegetation (p < 0.05), whereas a 23-year-old conventionally tilled and cropped field showed SOC stocks that were about 30% below this level. Confirming our hypotheses, this study clearly illustrated the high potential of NTM systems in increasing SOC storage under tropical conditions, and how a synchronic approach may be used to assess efficiently such modification on farmers` fields, identifying and excluding non desirable sources of heterogeneity (management, soils and climate). (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Agricultural ecosystems and their associated business and government systems are diverse and varied. They range from farms, to input supply businesses, to marketing and government policy systems, among others. These systems are dynamic and responsive to fluctuations in climate. Skill in climate prediction offers considerable opportunities to managers via its potential to realise system improvements (i.e. increased food production and profit and/or reduced risks). Realising these opportunities, however, is not straightforward as the forecasting skill is imperfect and approaches to applying the existing skill to management issues have not been developed and tested extensively. While there has been much written about impacts of climate variability, there has been relatively little done in relation to applying knowledge of climate predictions to modify actions ahead of likely impacts. However, a considerable body of effort in various parts of the world is now being focused on this issue of applying climate predictions to improve agricultural systems. In this paper, we outline the basis for climate prediction, with emphasis on the El Nino-Southern Oscillation phenomenon, and catalogue experiences at field, national and global scales in applying climate predictions to agriculture. These diverse experiences are synthesised to derive general lessons about approaches to applying climate prediction in agriculture. The case studies have been selected to represent a diversity of agricultural systems and scales of operation. They also represent the on-going activities of some of the key research and development groups in this field around the world. The case studies include applications at field/farm scale to dryland cropping systems in Australia, Zimbabwe, and Argentina. This spectrum covers resource-rich and resource-poor farming with motivations ranging from profit to food security. At national and global scale we consider possible applications of climate prediction in commodity forecasting (wheat in Australia) and examine implications on global wheat trade and price associated with global consequences of climate prediction. In cataloguing these experiences we note some general lessons. Foremost is the value of an interdisciplinary systems approach in connecting disciplinary Knowledge in a manner most suited to decision-makers. This approach often includes scenario analysis based oil simulation with credible models as a key aspect of the learning process. Interaction among researchers, analysts and decision-makers is vital in the development of effective applications all of the players learn. Issues associated with balance between information demand and supply as well as appreciation of awareness limitations of decision-makers, analysts, and scientists are highlighted. It is argued that understanding and communicating decision risks is one of the keys to successful applications of climate prediction. We consider that advances of the future will be made by better connecting agricultural scientists and practitioners with the science of climate prediction. Professions involved in decision making must take a proactive role in the development of climate forecasts if the design and use of climate predictions are to reach their full potential. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In maize (Zea mays L.), the inadequate nitrogen supply and planting density are considered limiting factors to the grain yield. The objective of this study was to evaluate the influence of different nitrogen levels and plant densities to the maize yield components and productivity. The experiment was carried out in the Cerrado region, located in the southern of the Maranhao State, Brazil, in a clay Oxisol (Ustox), cropped under the no-tillage system for six years. The randomized completed blocks experimental design with four replications was used, with treatments arrangement in a 5 x 4 factorial. The treatments were a combination of five doses of nitrogen as urea (0, 50, 100, 150 and 200 kg ha(-1)) and four plant densities (25,000; 50,000; 75,000 and 100,000 plants he). The grain number and mass per spike and grain mass per plant were improved by increased N and decreased plant density. Higher incomes of grains were obtained with adding concomitantly in N doses and in plants density. The maximum grain yield (11,9 Mg ha(-1)) was obtained with 120 kg ha(-1) of N and 83,000 plants ha(-1).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A resistência mecânica do solo à penetração exerce grande influência sobre o desenvolvimento vegetal, uma vez que o crescimento das raízes e a produtividade das culturas variam de forma inversamente proporcional ao seu valor. O objetivo do trabalho foi estudar a variabilidade espacial e a correlação entre a produtividade do milho (PG) e a resistência mecânica do solo à penetração (RP) de um Latossolo Vermelho sob preparo convencional, em área pertencente à Fazenda Experimental de Ensino e Pesquisa da Faculdade de Engenharia - FE/UNESP - Câmpus de Ilha Solteira. Foram definidos 133 pontos de amostragem no campo, segundo malha com espaçamento regular de 10,0 m, nos quais foram medidas a RP, a umidade gravimétrica (UG), nas camadas de 0-0,10; 0,10-0,20; 0,20-0,30 e 0,30-0,40 m, e a PG. O modelo exponencial mostrou-se adequado para descrever todos os semivariogramas experimentais construídos. A RP e a UG apresentaram moderada dependência espacial, com alcance variando entre 20,2 e 63,0 m. A PG apresentou forte dependência espacial com alcance de 15,3 m. A RP não apresentou correlação espacial com a PG. Valores de RP variando entre 0,9 e 2,0 MPa não restringiram a PG.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As modificações estruturais causadas no solo pelos diferentes sistemas de manejo podem resultar em maior ou menor compactação, que poderá interferir na resistência mecânica à penetração, densidade e porosidade do solo, influenciando o crescimento radicular e, por fim, a produtividade das culturas. O objetivo deste trabalho foi avaliar os efeitos da compactação sobre determinadas características de um Latossolo Vermelho textura média e associá-las ao crescimento radicular e à produtividade da cultura do milho. Os tratamentos principais foram constituídos por seis níveis de compactação, proporcionados pelo tráfego controlado de tratores, e duas camadas, como subtratamentos, com quatro repetições. Foram coletadas amostras indeformadas do solo nas camadas de 0-0,10 e 0,10-0,20 m, para determinação da resistência do solo à penetração, densidade e porosidade do solo. Para determinação de densidade, superfície, diâmetro e massa seca das raízes, foram retiradas amostras do solo nas camadas de 0-0,10 e 0,10-0,20 m, em cada parcela. O tráfego de tratores sobre o solo provocou maiores níveis de compactação na camada superficial, proporcionando maior densidade e superfície radicular. O diâmetro radicular e a massa seca das raízes aumentaram linearmente com o aumento da resistência à penetração do solo. Verificou-se que valores de resistência à penetração variando entre 1,03 e 5,69 MPa provocaram alterações na morfologia do sistema radicular do milho, reduzindo a produtividade da cultura em 2,581 Mg ha-1, mas não foram impeditivos ao enraizamento.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Preparos conservacionistas e sistemas de produção que visam à maximização sustentável do uso do solo e da água têm surgido como alternativas para regiões caracterizadas por períodos chuvosos relativamente curtos e temperaturas elevadas. O objetivo deste trabalho foi avaliar o sistema de consorciação entre milho e Brachiaria decumbens que melhor se adapte às condições edafoclimáticas da região da Zona da Mata do Estado de Alagoas. Os tratamentos consistiram de um híbrido de milho BRS3150, cultivado nos sistemas: Preparo Convencional, Cultivo Mínimo e Semeadura Direta (BRS3150 consorciado com Brachiaria decumbens). O delineamento utilizado foi o de blocos casualisados com parcelas subdivididas. Amostras de solo foram coletadas para análise química. Também foram avaliados os componentes da produção e produtividade de grãos de milho. Os diferentes preparos do solo e a presença de Brachiaria decumbens, no sistema de consócio com milho, não exerceram influência sobre os componentes da produção. Os resultados analisados permitem concluir que a presença da Brachiaria decumbens interferiu negativamente na produtividade dos grãos de milho, quando cultivado em sistema de consórcio, e as maiores produtividades foram obtidas nos sistemas conservacionistas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Considering the importance of nitrogen management and its biological fixation with diazotrophic bacteria, this study was carried out aiming to evaluate the agronomic performance of maize, in response to seed inoculation with Azospirillum brasilense and nitrogen application in side-dressing and leaf. The experiment was conducted in Selvíria, Mato Grosso of Sul State, Brazil, during the growing season 2010/2011, on a clayey Rhodic Haplustox (20° 20' S and 51° 24' W, with altitude of 340 m). Sixteen treatments were established with four replications, in randomized blocks with the combination of the factors A. brasilense (with and without inoculante), nitrogen rate (0 and 90 kg ha-1, in V5 growth stage) and urea leaf application (0, 4, 8 and 12%: application in V5 and V8 growth stage). The maize hybrid used was the DKB 390 YG®, sowed in the row spacing of 0.9 m. Parameters measured were productive and morphological components of culture and crop yield. Increase in maize yield by seed inoculation with A. brasilense was observed. The application of 90 kg ha -1 of nitrogen in side-dressing provided higher chlorophyll leaf index, stalk diameter and prolificacy, however, the yield not was increased. The application of urea leaf did not agronomic efficiency and, therefore, should not be used as the unique form of supply and alternative to nitrogen addition to crop.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The way of applying zinc can influence the zinc uptake and productivity of crops, especially cereals that have high demand for this nutrient. The aim of this study is to evaluate methods of Zn application on soil, nutritional status and productivity of maize. For this, an experiment was undertaken at FCAV/UNESP, Jaboticabal-SP, in Oxisol clay (DTPA on Zn: 0.5 mg dm-3) with maize (hybrid Simple Impact), from December through May 2009. Nine treatments with three doses of Zn in soil banded application (in furrows) and three doses of Zn by incorporation in soil (0-20 cm depth), foliar application, seed application and control (no Zn). The treatments were arranged in a randomized block design with four replications. Regardless of the method, Zn application promoted higher contents of this micronutrient in soil and higher accumulation in the shoots as well as increasing Zn in the maize grain. However, it did not affect the nutritional status and yield of the maize. The Zn application in the soil resulted in a greater Zn uptake by plants and maize yield, compared to Zn application in the plant by seed or foliar.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)