984 resultados para MACHINE DESIGN


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a surrogate-model-based optimization of a doubly-fed induction generator (DFIG) machine winding design for maximizing power yield. Based on site-specific wind profile data and the machine's previous operational performance, the DFIG's stator and rotor windings are optimized to match the maximum efficiency with operating conditions for rewinding purposes. The particle swarm optimization-based surrogate optimization techniques are used in conjunction with the finite element method to optimize the machine design utilizing the limited available information for the site-specific wind profile and generator operating conditions. A response surface method in the surrogate model is developed to formulate the design objectives and constraints. Besides, the machine tests and efficiency calculations follow IEEE standard 112-B. Numerical and experimental results validate the effectiveness of the proposed technologies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this work is to design a flywheel generator for a diesel hybrid working machine. In this work we perform detailed design of a generator. Mobile machines are commonly used in industry: road building machines, three harvesting machines, boring machines, trucks and other equipment. These machines work with a hydraulic drive system. This system provides good service property and high technical level. Manufacturers of mobile machines tend to satisfy all requirements of customers and modernized drive system. In this work also a description of the frequency inverter is present. Power electronics system is one of the basic parts for structures perform in the project.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This master’s thesis mainly focuses on the design requirements of an Electric drive for Hybrid car application and its control strategy to achieve a wide speed range. It also emphasises how the control and performance requirements are transformed into its design variables. A parallel hybrid topology is considered where an IC engine and an electric drive share a common crank shaft. A permanent magnet synchronous machine (PMSM) is used as an electric drive machine. Performance requirements are converted into Machine design variables using the vector model of PMSM. Main dimensions of the machine are arrived using analytical approach and Finite Element Analysis (FEA) is used to verify the design and performance. Vector control algorithm was used to control the machine. The control algorithm was tested in a low power PMSM using an embedded controller. A prototype of 10 kW PMSM was built according to the design values. The prototype was tested in the laboratory using a high power converter. Tests were carried out to verify different operating modes. The results were in agreement with the calculations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The term "Logic Programming" refers to a variety of computer languages and execution models which are based on the traditional concept of Symbolic Logic. The expressive power of these languages offers promise to be of great assistance in facing the programming challenges of present and future symbolic processing applications in Artificial Intelligence, Knowledge-based systems, and many other areas of computing. The sequential execution speed of logic programs has been greatly improved since the advent of the first interpreters. However, higher inference speeds are still required in order to meet the demands of applications such as those contemplated for next generation computer systems. The execution of logic programs in parallel is currently considered a promising strategy for attaining such inference speeds. Logic Programming in turn appears as a suitable programming paradigm for parallel architectures because of the many opportunities for parallel execution present in the implementation of logic programs. This dissertation presents an efficient parallel execution model for logic programs. The model is described from the source language level down to an "Abstract Machine" level suitable for direct implementation on existing parallel systems or for the design of special purpose parallel architectures. Few assumptions are made at the source language level and therefore the techniques developed and the general Abstract Machine design are applicable to a variety of logic (and also functional) languages. These techniques offer efficient solutions to several areas of parallel Logic Programming implementation previously considered problematic or a source of considerable overhead, such as the detection and handling of variable binding conflicts in AND-Parallelism, the specification of control and management of the execution tree, the treatment of distributed backtracking, and goal scheduling and memory management issues, etc. A parallel Abstract Machine design is offered, specifying data areas, operation, and a suitable instruction set. This design is based on extending to a parallel environment the techniques introduced by the Warren Abstract Machine, which have already made very fast and space efficient sequential systems a reality. Therefore, the model herein presented is capable of retaining sequential execution speed similar to that of high performance sequential systems, while extracting additional gains in speed by efficiently implementing parallel execution. These claims are supported by simulations of the Abstract Machine on sample programs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Modern electric machine drives, particularly three phase permanent magnet machine drive systems represent an indispensable part of high power density products. Such products include; hybrid electric vehicles, large propulsion systems, and automation products. Reliability and cost of these products are directly related to the reliability and cost of these systems. The compatibility of the electric machine and its drive system for optimal cost and operation has been a large challenge in industrial applications. The main objective of this dissertation is to find a design and control scheme for the best compromise between the reliability and optimality of the electric machine-drive system. The effort presented here is motivated by the need to find new techniques to connect the design and control of electric machines and drive systems. ^ A highly accurate and computationally efficient modeling process was developed to monitor the magnetic, thermal, and electrical aspects of the electric machine in its operational environments. The modeling process was also utilized in the design process in form finite element based optimization process. It was also used in hardware in the loop finite element based optimization process. The modeling process was later employed in the design of a very accurate and highly efficient physics-based customized observers that are required for the fault diagnosis as well the sensorless rotor position estimation. Two test setups with different ratings and topologies were numerically and experimentally tested to verify the effectiveness of the proposed techniques. ^ The modeling process was also employed in the real-time demagnetization control of the machine. Various real-time scenarios were successfully verified. It was shown that this process gives the potential to optimally redefine the assumptions in sizing the permanent magnets of the machine and DC bus voltage of the drive for the worst operating conditions. ^ The mathematical development and stability criteria of the physics-based modeling of the machine, design optimization, and the physics-based fault diagnosis and the physics-based sensorless technique are described in detail. ^ To investigate the performance of the developed design test-bed, software and hardware setups were constructed first. Several topologies of the permanent magnet machine were optimized inside the optimization test-bed. To investigate the performance of the developed sensorless control, a test-bed including a 0.25 (kW) surface mounted permanent magnet synchronous machine example was created. The verification of the proposed technique in a range from medium to very low speed, effectively show the intelligent design capability of the proposed system. Additionally, to investigate the performance of the developed fault diagnosis system, a test-bed including a 0.8 (kW) surface mounted permanent magnet synchronous machine example with trapezoidal back electromotive force was created. The results verify the use of the proposed technique under dynamic eccentricity, DC bus voltage variations, and harmonic loading condition make the system an ideal case for propulsion systems.^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Modern electric machine drives, particularly three phase permanent magnet machine drive systems represent an indispensable part of high power density products. Such products include; hybrid electric vehicles, large propulsion systems, and automation products. Reliability and cost of these products are directly related to the reliability and cost of these systems. The compatibility of the electric machine and its drive system for optimal cost and operation has been a large challenge in industrial applications. The main objective of this dissertation is to find a design and control scheme for the best compromise between the reliability and optimality of the electric machine-drive system. The effort presented here is motivated by the need to find new techniques to connect the design and control of electric machines and drive systems. A highly accurate and computationally efficient modeling process was developed to monitor the magnetic, thermal, and electrical aspects of the electric machine in its operational environments. The modeling process was also utilized in the design process in form finite element based optimization process. It was also used in hardware in the loop finite element based optimization process. The modeling process was later employed in the design of a very accurate and highly efficient physics-based customized observers that are required for the fault diagnosis as well the sensorless rotor position estimation. Two test setups with different ratings and topologies were numerically and experimentally tested to verify the effectiveness of the proposed techniques. The modeling process was also employed in the real-time demagnetization control of the machine. Various real-time scenarios were successfully verified. It was shown that this process gives the potential to optimally redefine the assumptions in sizing the permanent magnets of the machine and DC bus voltage of the drive for the worst operating conditions. The mathematical development and stability criteria of the physics-based modeling of the machine, design optimization, and the physics-based fault diagnosis and the physics-based sensorless technique are described in detail. To investigate the performance of the developed design test-bed, software and hardware setups were constructed first. Several topologies of the permanent magnet machine were optimized inside the optimization test-bed. To investigate the performance of the developed sensorless control, a test-bed including a 0.25 (kW) surface mounted permanent magnet synchronous machine example was created. The verification of the proposed technique in a range from medium to very low speed, effectively show the intelligent design capability of the proposed system. Additionally, to investigate the performance of the developed fault diagnosis system, a test-bed including a 0.8 (kW) surface mounted permanent magnet synchronous machine example with trapezoidal back electromotive force was created. The results verify the use of the proposed technique under dynamic eccentricity, DC bus voltage variations, and harmonic loading condition make the system an ideal case for propulsion systems.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The optimal design of a heat exchanger system is based on given model parameters together with given standard ranges for machine design variables. The goals set for minimizing the Life Cycle Cost (LCC) function which represents the price of the saved energy, for maximizing the momentary heat recovery output with given constraints satisfied and taking into account the uncertainty in the models were successfully done. Nondominated Sorting Genetic Algorithm II (NSGA-II) for the design optimization of a system is presented and implemented inMatlab environment. Markov ChainMonte Carlo (MCMC) methods are also used to take into account the uncertainty in themodels. Results show that the price of saved energy can be optimized. A wet heat exchanger is found to be more efficient and beneficial than a dry heat exchanger even though its construction is expensive (160 EUR/m2) compared to the construction of a dry heat exchanger (50 EUR/m2). It has been found that the longer lifetime weights higher CAPEX and lower OPEX and vice versa, and the effect of the uncertainty in the models has been identified in a simplified case of minimizing the area of a dry heat exchanger.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

ABSTRACT This study aims at presenting the process of machine design and agricultural implements by means of a reference model, formulated with the purpose of explaining the development activities of new products, serving as a guideline to coach human resources and to assist in formalizing the process in small and medium-sized businesses (SMB), i.e. up to 500 employees. The methodology used included the process modeling, carried out from case studies in the SMB, and the study of reference models in literature. The modeling formalism used was based on the IDEF0 standard, which identifies the dimensions required for the model detailing: input information; activities; tasks; knowledge domains; mechanisms; controls and information produced. These dimensions were organized in spreadsheets and graphs. As a result, a reference model with 27 activities and 71 tasks was obtained, distributed over four phases of the design process. The evaluation of the model was carried out by the companies participating in the case studies and by experts, who concluded that the model explains the actions needed to develop new products in SMB.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aim of this thesis is to utilize the technology developed at LUT and to provide an easy tool for high-speed solid-rotor induction machine preliminary design. Computer aided design tool MathCAD has been chosen as the environment for realizing the calculation program. Four versions of the design program have been made depending on the motor rotor type. The first rotor type is an axially slitted solid-rotor with steel end rings. The next one is an axially slitted solid-rotor with copper end rings. The third machine type is a solid rotor with deep, rectangular copper bars and end rings (squirrel cage). And the last one is a solid-rotor with round copper bars and end rings (squirrel cage). Each type of rotor has its own specialties but a general thread of design is common. This paper follows the structure of the calculating program and explains some features and formulas. The attention is concentrated on the difference between laminated and solid-rotor machine design principles. There is no deep analysis of the calculation ways are presented. References for all solution methods appearing during the design procedure are given for more detailed studying. This thesis pays respect to the latest innovations in solid-rotor machines theory. Rotor ends’ analytical calculation follows the latest knowledge in this field. Correction factor for adjusting the rotor impedance is implemented. The purpose of the created design program is to calculate the preliminary dimensions of the machine according to initial data. Obtained results are not recommended for exact machine development. Further more detailed design should be done in a finite element method application. Hence, this thesis is a practical tool for the prior evaluating of the high-speed machine with different solid-rotor types parameters.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This doctoral thesis presents a study on the development of a liquid-cooled frame salient pole permanent-magnet-exited traction machine for a four-wheel-driven electric car. The emphasis of the thesis is put on a radial flux machine design in order to achieve a light-weight machine structure for traction applications. The design features combine electromagnetic and thermal design methods, because traction machine operation does not have a strict operating point. Arbitrary load cycles and the flexible supply require special attention in the design process. It is shown that accurate modelling of the machine magnetic state is essential for high-performance operation. The saturation effect related to the cross-saturation has to be taken carefully into account in order to achieve the desired operation. Two prototype machines have been designed and built for testing: one totally enclosed machine with a special magnet module pole arrangement and another through-ventilated machine with a more traditional embedded magnet structure. Both structures are built with magnetically salient structures in order to increase the torque production capability with the reluctance torque component. Both machine structures show potential for traction usage. However, the traditional embedded magnet design turns out to be mechanically the more secure one of these two machine options.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Traction motor design significantly differs from industrial machine design. The starting point is the load cycle instead of the steady-state rated operation point. The speed of the motor varies from zero to very high speeds. At low speeds, heavy overloading is used for starting, and the field-weakening region also plays an important role. Finding a suitable fieldweakening point is one of the important design targets. At the lowest speeds, a high torque output is desired, and all current reserves of the supplying converter unit are used to achieve the torque. In this paper, a 110-kW 2.5-p.u. starting torque and a maximum 2.5-p.u. speed permanent-magnet traction motor will be studied. The field-weakening point is altered by varying the number of winding turns of machine. One design is selected for prototyping. Theoretical results are verified by measurements.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Electrical machines have significant improvement potential. Nevertheless, the field is characterized by incremental innovations. Admittedly, steady improvement has been achieved, but no breakthrough development. Radical development in the field would require the introduction of new elements, such that may change the whole electrical machine industry system. Recent technological advancements in nanomaterials have opened up new horizons for the macroscopic application of carbon nanotube (CNT) fibres. With values of 100 MS/m measured on individual CNTs, CNT fibre materials hold promise for conductivities far beyond those of metals. Highly conductive, lightweight and strong CNT yarn is finally within reach; it could replace copper as a potentially better winding material. Although not yet providing low resistivity, the newest CNT yarn offers attractive perspectives for accelerated efficiency improvement of electrical machines. In this article, the potential for using new CNT materials to replace copper in machine windings is introduced. It does so, firstly, by describing the environment for a change that could revolutionize the industry and, secondly, by presenting the breakthrough results of a prototype construction. In the test motor, which is to our knowledge the first in its kind, the presently most electrically conductive carbon nanotube yarn replaces usual copper in the windings.