929 resultados para Lyapunov Exponent


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The dynamic buckling of viscoelastic plates with large deflection is investigated in this paper by using chaotic and fractal theory. The material behavior is given in terms of the Boltzmann superposition principle. in order to obtain accurate computation results, the nonlinear integro-differential dynamic equation is changed into an autonomic four-dimensional dynamical system. The numerical time integrations of equations are performed by using the fourth-order Runge-Kutta method. And the Lyapunov exponent spectrum, the fractal dimension of strange attractors and the time evolution of deflection are obtained. The influence of geometry nonlinearity and viscoelastic parameter on the dynamic buckling of viscoelastic plates is discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many problems in control and signal processing can be formulated as sequential decision problems for general state space models. However, except for some simple models one cannot obtain analytical solutions and has to resort to approximation. In this thesis, we have investigated problems where Sequential Monte Carlo (SMC) methods can be combined with a gradient based search to provide solutions to online optimisation problems. We summarise the main contributions of the thesis as follows. Chapter 4 focuses on solving the sensor scheduling problem when cast as a controlled Hidden Markov Model. We consider the case in which the state, observation and action spaces are continuous. This general case is important as it is the natural framework for many applications. In sensor scheduling, our aim is to minimise the variance of the estimation error of the hidden state with respect to the action sequence. We present a novel SMC method that uses a stochastic gradient algorithm to find optimal actions. This is in contrast to existing works in the literature that only solve approximations to the original problem. In Chapter 5 we presented how an SMC can be used to solve a risk sensitive control problem. We adopt the use of the Feynman-Kac representation of a controlled Markov chain flow and exploit the properties of the logarithmic Lyapunov exponent, which lead to a policy gradient solution for the parameterised problem. The resulting SMC algorithm follows a similar structure with the Recursive Maximum Likelihood(RML) algorithm for online parameter estimation. In Chapters 6, 7 and 8, dynamic Graphical models were combined with with state space models for the purpose of online decentralised inference. We have concentrated more on the distributed parameter estimation problem using two Maximum Likelihood techniques, namely Recursive Maximum Likelihood (RML) and Expectation Maximization (EM). The resulting algorithms can be interpreted as an extension of the Belief Propagation (BP) algorithm to compute likelihood gradients. In order to design an SMC algorithm, in Chapter 8 uses a nonparametric approximations for Belief Propagation. The algorithms were successfully applied to solve the sensor localisation problem for sensor networks of small and medium size.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We propose here a local exponential divergence plot which is capable of providing an alternative means of characterizing a complex time series. The suggested plot defines a time-dependent exponent and a ''plus'' exponent. Based on their changes with the embedding dimension and delay time, a criterion for estimating simultaneously the minimal acceptable embedding dimension, the proper delay time, and the largest Lyapunov exponent has been obtained. When redefining the time-dependent exponent LAMBDA(k) curves on a series of shells, we have found that whether a linear envelope to the LAMBDA(k) curves exists can serve as a direct dynamical method of distinguishing chaos from noise.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present a direct and dynamical method to distinguish low-dimensional deterministic chaos from noise. We define a series of time-dependent curves which are closely related to the largest Lyapunov exponent. For a chaotic time series, there exists an envelope to the time-dependent curves, while for a white noise or a noise with the same power spectrum as that of a chaotic time series, the envelope cannot be defined. When a noise is added to a chaotic time series, the envelope is eventually destroyed with the increasing of the amplitude of the noise.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

we propose here a local exponential divergence plot which is capable of providing a new means of characterizing chaotic time series. The suggested plot defines a time dependent exponent LAMBDA and a ''plus'' exponent LAMBDA+ which serves as a criterion for estimating simultaneously the minimal acceptable embedding dimension, the proper delay time and the largest Lyapunov exponent.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The autorotation of two tandem triangular cylinders at different gap distances is investigated by numerical simulations. At the Reynolds number of 200, three distinct regimes are observed with the increase of gap distance: namely, angular oscillation, quasi-periodic autorotation and ‘chaotic’ autorotation. For various gap distances, the characteristic of vortex shedding and vortex interaction are discussed. The phase graphs (angular acceleration vs. angular velocity) and the power spectra of moment are analyzed to characterize the motion of the cylinder. The Lyapunov exponent is also calculated to identify the existence of chaos.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Desde a descoberta do estado quasicristalino por Daniel Shechtman et al. em 1984 e da fabricação por Roberto Merlin et al. de uma superrede artificial de GaAs/ AlAs em 1985 com características da sequência de Fibonacci, um grande número de trabalhos teóricos e experimentais tem relatado uma variedade de propriedades interessantes no comportamento de sistemas aperiódicos. Do ponto de vista teórico, é bem sabido que a cadeia de Fibonacci em uma dimensão se constitui em um protótipo de sucesso para a descrição do estado quasicristalino de um sólido. Dependendo da regra de inflação, diferentes tipos de estruturas aperiódicas podem ser obtidas. Esta diversidade originou as chamadas regras metálicas e devido à possibilidade de tratamento analítico rigoroso este modelo tem sido amplamente estudado. Neste trabalho, propriedades de localização em uma dimensão são analisadas considerando-se um conjunto de regras metálicas e o modelo de ligações fortes de banda única. Considerando-se o Hamiltoniano de ligações fortes com um orbital por sítio obtemos um conjunto de transformações relativas aos parâmetros de dizimação, o que nos permitiu calcular as densidades de estados (DOS) para todas as configurações estudadas. O estudo detalhado da densidade de estados integrada (IDOS) para estes casos, mostra o surgimento de plateaux na curva do número de ocupação explicitando o aparecimento da chamada escada do diabo" e também o caráter fractal destas estruturas. Estudando o comportamento da variação da energia em função da variação da energia de hopping, construímos padrões do tipo borboletas de Hofstadter, que simulam o efeito de um campo magnético atuando sobre o sistema. A natureza eletrônica dos auto estados é analisada a partir do expoente de Lyapunov (γ), que está relacionado com a evolução da função de onda eletrônica ao longo da cadeia unidimensional. O expoente de Lyapunov está relacionado com o inverso do comprimento de localização (ξ= 1 /γ), sendo nulo para os estados estendidos e positivo para estados localizados. Isto define claramente as posições dos principais gaps de energia do sistema. Desta forma, foi possível analisar o comportamento autossimilar de cadeias com diferentes regras de formação. Analisando-se o espectro de energia em função do número de geração de cadeias que seguem as regras de ouro e prata foi feito, obtemos conjuntos do tipo-Cantor, que nos permitiu estudar o perfil do calor específico de uma cadeia e Fibonacci unidimensional para diversas gerações

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In dieser Arbeit werden Verfahren zur visuellen Beurteilung von Stabilitätseigenschaften nichtlinearer, zeitdiskreter Systeme und mögliche Anwendungen vorgestellt. Ausgehend von den erforderlichen Grundbegriffen der Chaostheorie werden verschiedene Maße zur Detektion, Beschreibung und Visualisierung chaotischen Systemverhaltens motiviert, mathematisch definiert, physikalisch interpretiert und gedeutet: der Lyapunov Exponent, die Entropie, das Fourierspektrum und die Korrelation. Als erste Anwendung basierend auf diesen Gütemaßen wird das Verhalten von linearen und nichtlinearen rekursiven Systemen visualisiert und verglichen. Es zeigt sich, dass bei rekursiven linearen Systemen der Übergang von einem stabilen in einen instabilen oder chaotischen Zustand kontinuierlich erfolgt, während dieser Übergang bei nicht linearen Systemen häufig abrupt auftritt. Unter Verwendung der vorgestellten Visualisierung lässt sich sehr genau nachvollziehen, welche Parameter und insbesondere welche Parameterübergänge dabei kritisch sind. Diese Kenntnis ist sehr wichtig für eine störfreie Systemparametrierung und eine erforderliche Arbeitspunktsuche. In einer zweiten Anwendung wird chaotisches Systemverhalten als Generator optimal orthogonaler Signalfunktionen eingesetzt. Dazu wird die Rekursionsfolge in einem chaotischen Arbeitspunkt eines nichtlinearen rekursiven Systems als Musterfunktion eines statistischen Zufallsprozesses interpretiert: Je chaotischer das Systemverhalten und je kleiner die Varianz des Korrelationsmaßes desto besser können orthogonale Signalfolgen modelliert werden. Solche Signalfolgen sind von großer Bedeutung, wenn digitale Nachrichten über einen gestörten Kanal mit minimalem Daten- und Energieaufwand übertragen werden sollen. Als abschließendes Beispiel wird die fraktale Bildcodierung vorgestellt. Sie beruht nicht wie die klassischen Verfahren der Bildcodierung (Prädiktion, Transformation) auf statistischen Eigenschaften des Bildsignals sondern ausschließlich auf Selbstähnlichkeit. Die Bildpunkte eines Bildblockes werden nicht durch deren Grauwerte sondern durch ein Fraktal beschrieben, wobei dieses Fraktal durch eine kontraktive, affine Abbildung der Grauwertinformation dargestellt wird. Dieses Fraktal, d.h. diese Abbildungsvorschrift oder Gesetzmäßigkeit beschreibt die vollständige Information des Bildes. Durch die Anwendung dieser fraktalen Darstellung wird das codierte Bild aus beliebigen Bildern gleicher Größe generiert.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of coupling two chaotic Nd:YAG lasers with intracavity KTP crystal for frequency doubling is numerically studied for the case of the laser operating in three longitudinal modes. It is seen that the system goes from chaotic to periodic and then to steady state as the coupling constant is increased. The intensity time series and phase diagrams are drawn and the Lyapunov characteristic exponent is calculated to characterize the chaotic and periodic regions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have numerically studied the behavior of a two-mode Nd-YAG laser with an intracavity KTP crystal. It is found that when the parameter, which is a measure of the relative orientations of the KTP crystal with respect to the Nd-YAG crystal, is varied continuously, the output intensity fluctuations change from chaotic to stable behavior through a sequence of reverse period doubling bifurcations. The graph of the intensity in the X-polarized mode against that in the Y-polarized mode shows a complex pattern in the chaotic regime. The Lyapunov exponent is calculated for the chaotic and periodic regions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of coupling on two high frequency modulated semiconductor lasers is numerically studied. The phase diagrams and bifurcatio.n diagrams are drawn. As the coupling constant is increased the system goes from chaotic to periodic behavior through a reverse period doubling sequence. The Lyapunov exponent is calculated to characterize chaotic and periodic regions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Medical fields requires fast, simple and noninvasive methods of diagnostic techniques. Several methods are available and possible because of the growth of technology that provides the necessary means of collecting and processing signals. The present thesis details the work done in the field of voice signals. New methods of analysis have been developed to understand the complexity of voice signals, such as nonlinear dynamics aiming at the exploration of voice signals dynamic nature. The purpose of this thesis is to characterize complexities of pathological voice from healthy signals and to differentiate stuttering signals from healthy signals. Efficiency of various acoustic as well as non linear time series methods are analysed. Three groups of samples are used, one from healthy individuals, subjects with vocal pathologies and stuttering subjects. Individual vowels/ and a continuous speech data for the utterance of the sentence "iruvarum changatimaranu" the meaning in English is "Both are good friends" from Malayalam language are recorded using a microphone . The recorded audio are converted to digital signals and are subjected to analysis.Acoustic perturbation methods like fundamental frequency (FO), jitter, shimmer, Zero Crossing Rate(ZCR) were carried out and non linear measures like maximum lyapunov exponent(Lamda max), correlation dimension (D2), Kolmogorov exponent(K2), and a new measure of entropy viz., Permutation entropy (PE) are evaluated for all three groups of the subjects. Permutation Entropy is a nonlinear complexity measure which can efficiently distinguish regular and complex nature of any signal and extract information about the change in dynamics of the process by indicating sudden change in its value. The results shows that nonlinear dynamical methods seem to be a suitable technique for voice signal analysis, due to the chaotic component of the human voice. Permutation entropy is well suited due to its sensitivity to uncertainties, since the pathologies are characterized by an increase in the signal complexity and unpredictability. Pathological groups have higher entropy values compared to the normal group. The stuttering signals have lower entropy values compared to the normal signals.PE is effective in charaterising the level of improvement after two weeks of speech therapy in the case of stuttering subjects. PE is also effective in characterizing the dynamical difference between healthy and pathological subjects. This suggests that PE can improve and complement the recent voice analysis methods available for clinicians. The work establishes the application of the simple, inexpensive and fast algorithm of PE for diagnosis in vocal disorders and stuttering subjects.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In many applications, there is a desire to determine if the dynamics of interest are chaotic or not. Since positive Lyapunov exponents are a signature for chaos, they are often used to determine this. Reliable estimates of Lyapunov exponents should demonstrate evidence of convergence; but literature abounds in which this evidence lacks. This paper presents two maps through which it highlights the importance of providing evidence of convergence of Lyapunov exponent estimates. The results suggest cautious conclusions when confronted with real data. Moreover, the maps are interesting in their own right.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We study systems with periodically oscillating parameters that can give way to complex periodic or nonperiodic orbits. Performing the long time limit, we can define ergodic averages such as Lyapunov exponents, where a negative maximal Lyapunov exponent corresponds to a stable periodic orbit. By this, extremely complicated periodic orbits composed of contracting and expanding phases appear in a natural way. Employing the technique of ϵ-uncertain points, we find that values of the control parameters supporting such periodic motion are densely embedded in a set of values for which the motion is chaotic. When a tiny amount of noise is coupled to the system, dynamics with positive and with negative nontrivial Lyapunov exponents are indistinguishable. We discuss two physical systems, an oscillatory flow inside a duct and a dripping faucet with variable water supply, where such a mechanism seems to be responsible for a complicated alternation of laminar and turbulent phases.