988 resultados para Lumped Model


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper shows the insertion of corona effect in a transmission line model based on lumped elements. The development is performed considering a frequency-dependent line representation by cascade of pi sections and state equations. Hence, the detailed profile of currents and voltages along the line, described from a non-homogeneous system of differential equations, can be obtained directly in time domain applying numerical or analytic solution integration methods. The corona discharge model is also based on lumped elements and is implemented from the well-know Skilling-Umoto Model.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Voltages and currents in the transmission line are described by differential equations that are difficult to solve due soil and skin effect that has to be considered for accurate results, but it increases their complexity. Therefore there are some models to study the voltages and currents along in transmission line. The distributed parameters model that transforms the equations in time domain to the frequency domain and once the solutions are obtained, they are converted to time domain using the Inverse Laplace Transform using numerical methods. Another model is named lumped parameters model and it considers the transmission line represented by a pi-circuit cascade and the currents and voltages are described by state equations. In the simulations using the lumped parameters model, it can be observed the presence of spurious oscillations that are independent of the quantity of pi-circuits used and do not represent the real value of the transient. In this work will be projected a passive low-pass filter directly inserted in the lumped parameters model to reduce the spurious oscillations in the simulations, making this model more accurate and reliable for studying the electromagnetic transients in power systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Through a lumped parameter modelling approach, a dynamical model, which can reproduce the motion of the muscles of a human body standing in different postures during Whole Body Vibrations (WBVs) treatment, has been developed. The key parameters, associated to the dynamics of the motion of the muscles of the lower limbs, have been identified starting from accelerometer measurements. The developed model can be usefully applied to the optimization of WBVs treatments which can effectively enhance muscle activation. © 2013 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stormwater quality modelling results is subject to uncertainty. The variability of input parameters is an important source of overall model error. An in-depth understanding of the variability associated with input parameters can provide knowledge on the uncertainty associated with these parameters and consequently assist in uncertainty analysis of stormwater quality models and the decision making based on modelling outcomes. This paper discusses the outcomes of a research study undertaken to analyse the variability related to pollutant build-up parameters in stormwater quality modelling. The study was based on the analysis of pollutant build-up samples collected from 12 road surfaces in residential, commercial and industrial land uses. It was found that build-up characteristics vary appreciably even within the same land use. Therefore, using land use as a lumped parameter would contribute significant uncertainties in stormwater quality modelling. Additionally, it was also found that the variability in pollutant build-up can also be significant depending on the pollutant type. This underlines the importance of taking into account specific land use characteristics and targeted pollutant species when undertaking uncertainty analysis of stormwater quality models or in interpreting the modelling outcomes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Beavers are often found to be in conflict with human interests by creating nuisances like building dams on flowing water (leading to flooding), blocking irrigation canals, cutting down timbers, etc. At the same time they contribute to raising water tables, increased vegetation, etc. Consequently, maintaining an optimal beaver population is beneficial. Because of their diffusion externality (due to migratory nature), strategies based on lumped parameter models are often ineffective. Using a distributed parameter model for beaver population that accounts for their spatial and temporal behavior, an optimal control (trapping) strategy is presented in this paper that leads to a desired distribution of the animal density in a region in the long run. The optimal control solution presented, imbeds the solution for a large number of initial conditions (i.e., it has a feedback form), which is otherwise nontrivial to obtain. The solution obtained can be used in real-time by a nonexpert in control theory since it involves only using the neural networks trained offline. Proper orthogonal decomposition-based basis function design followed by their use in a Galerkin projection has been incorporated in the solution process as a model reduction technique. Optimal solutions are obtained through a "single network adaptive critic" (SNAC) neural-network architecture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Growing consumer expectations continue to fuel further advancements in vehicle ride comfort analysis including development of a comprehensive tool capable of aiding the understanding of ride comfort. To date, most of the work on biodynamic responses of human body in the context of ride comfort mainly concentrates on driver or a designated occupant and therefore leaves the scope for further work on ride comfort analysis covering a larger number of occupants with detailed modeling of their body segments. In the present study, governing equations of a 13-DOF (degrees-of-freedom) lumped parameter model (LPM) of a full car with seats (7-DOF without seats) and a 7-DOF occupant model, a linear version of an earlier non-linear occupant model, are presented. One or more occupant models can be coupled with the vehicle model resulting into a maximum of 48-DOF LPM for a car with five occupants. These multi-occupant models can be formulated in a modular manner and solved efficiently using MATLAB/SIMULINK for a given transient road input. The vehicle model and the occupant model are independently verified by favorably comparing computed dynamic responses with published data. A number of cases with different dispositions of occupants in a small car are analyzed using the current modular approach thereby underscoring its potential for efficient ride quality assessment and design of suspension systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of the current study is to evaluate the fidelity of load cell reading during impact testing in a drop-weight impactor using lumped parameter modeling. For the most common configuration of a moving impactor-load cell system in which dynamic load is transferred from the impactor head to the load cell, a quantitative assessment is made of the possible discrepancy that can result in load cell response. A 3-DOF (degrees-of-freedom) LPM (lumped parameter model) is considered to represent a given impact testing set-up. In this model, a test specimen in the form of a steel hat section similar to front rails of cars is represented by a nonlinear spring while the load cell is assumed to behave in a linear manner due to its high stiffness. Assuming a given load-displacement response obtained in an actual test as the true behavior of the specimen, the numerical solution of the governing differential equations following an implicit time integration scheme is shown to yield an excellent reproduction of the mechanical behavior of the specimen thereby confirming the accuracy of the numerical approach. The spring representing the load cell, however,predicts a response that qualitatively matches the assumed load-displacement response of the test specimen with a perceptibly lower magnitude of load.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many applications in cosmology and astrophysics at millimeter wavelengths including CMB polarization, studies of galaxy clusters using the Sunyaev-Zeldovich effect (SZE), and studies of star formation at high redshift and in our local universe and our galaxy, require large-format arrays of millimeter-wave detectors. Feedhorn and phased-array antenna architectures for receiving mm-wave light present numerous advantages for control of systematics, for simultaneous coverage of both polarizations and/or multiple spectral bands, and for preserving the coherent nature of the incoming light. This enables the application of many traditional "RF" structures such as hybrids, switches, and lumped-element or microstrip band-defining filters.

Simultaneously, kinetic inductance detectors (KIDs) using high-resistivity materials like titanium nitride are an attractive sensor option for large-format arrays because they are highly multiplexable and because they can have sensitivities reaching the condition of background-limited detection. A KID is a LC resonator. Its inductance includes the geometric inductance and kinetic inductance of the inductor in the superconducting phase. A photon absorbed by the superconductor breaks a Cooper pair into normal-state electrons and perturbs its kinetic inductance, rendering it a detector of light. The responsivity of KID is given by the fractional frequency shift of the LC resonator per unit optical power.

However, coupling these types of optical reception elements to KIDs is a challenge because of the impedance mismatch between the microstrip transmission line exiting these architectures and the high resistivity of titanium nitride. Mitigating direct absorption of light through free space coupling to the inductor of KID is another challenge. We present a detailed titanium nitride KID design that addresses these challenges. The KID inductor is capacitively coupled to the microstrip in such a way as to form a lossy termination without creating an impedance mismatch. A parallel plate capacitor design mitigates direct absorption, uses hydrogenated amorphous silicon, and yields acceptable noise. We show that the optimized design can yield expected sensitivities very close to the fundamental limit for a long wavelength imager (LWCam) that covers six spectral bands from 90 to 400 GHz for SZE studies.

Excess phase (frequency) noise has been observed in KID and is very likely caused by two-level systems (TLS) in dielectric materials. The TLS hypothesis is supported by the measured dependence of the noise on resonator internal power and temperature. However, there is still a lack of a unified microscopic theory which can quantitatively model the properties of the TLS noise. In this thesis we derive the noise power spectral density due to the coupling of TLS with phonon bath based on an existing model and compare the theoretical predictions about power and temperature dependences with experimental data. We discuss the limitation of such a model and propose the direction for future study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of transmission matrices and lumped parameter models for describing continuous systems is the subject of this study. Non-uniform continuous systems which play important roles in practical vibration problems, e.g., torsional oscillations in bars, transverse bending vibrations of beams, etc., are of primary importance.

A new approach for deriving closed form transmission matrices is applied to several classes of non-uniform continuous segments of one dimensional and beam systems. A power series expansion method is presented for determining approximate transmission matrices of any order for segments of non-uniform systems whose solutions cannot be found in closed form. This direct series method is shown to give results comparable to those of the improved lumped parameter models for one dimensional systems.

Four types of lumped parameter models are evaluated on the basis of the uniform continuous one dimensional system by comparing the behavior of the frequency root errors. The lumped parameter models which are based upon a close fit to the low frequency approximation of the exact transmission matrix, at the segment level, are shown to be superior. On this basis an improved lumped parameter model is recommended for approximating non-uniform segments. This new model is compared to a uniform segment approximation and error curves are presented for systems whose areas very quadratically and linearly. The effect of varying segment lengths is investigated for one dimensional systems and results indicate very little improvement in comparison to the use of equal length segments. For purposes of completeness, a brief summary of various lumped parameter models and other techniques which have previously been used to approximate the uniform Bernoulli-Euler beam is a given.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An extended computational model of the circulatory system has been developed to predict blood flow in the presence of ventricular assist devices (VADs). A novel VAD, placed in the descending aorta, intended to offload the left ventricle (LV) and augment renal perfusion is being studied. For this application, a better understanding of the global hemodynamic response of the VAD, in essence an electrically driven pump, and the cardiovascular system is necessary. To meet this need, a model has been established as a nonlinear, lumped-parameter electrical analog, and simulated results under different states [healthy, congestive heart failure (CHF), and postinsertion of VAD] are presented. The systemic circulation is separated into five compartments and the descending aorta is composed of three components to accurately yield the system response of each section before and after the insertion of the VAD. Delays in valve closing time and blood inertia in the aorta were introduced to deliver a more realistic model. Pump governing equations and optimization are based on fundamental theories of turbomachines and can serve as a practical initial design point for rotary blood pumps. The model's results closely mimic established parameters for the circulatory system and confirm the feasibility of the intra-aortic VAD concept. This computational model can be linked with models of the pump motor to provide a valuable tool for innovative VAD design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An appreciation of the quantity of streamflow derived from the main hydrological pathways involved in transporting diffuse contaminants is critical when addressing a wide range of water resource management issues. In order to assess hydrological pathway contributions to streams, it is necessary to provide feasible upper and lower bounds for flows in each pathway. An important first step in this process is to provide reliable estimates of the slower responding groundwater pathways and subsequently the quicker overland and interflow pathways. This paper investigates the effectiveness of a multi-faceted approach applying different hydrograph separation techniques, supplemented by lumped hydrological modelling, for calculating the Baseflow Index (BFI), for the development of an integrated approach to hydrograph separation. A semi-distributed, lumped and deterministic rainfall runoff model known as NAM has been applied to ten catchments (ranging from 5 to 699 km2). While this modelling approach is useful as a validation method, NAM itself is also an important tool for investigation. These separation techniques provide a large variation in BFI, a difference of 0.741 predicted for BFI in a catchment with the less reliable fixed and sliding interval methods and local minima turning point methods included. This variation is reduced to 0.167 with these methods omitted. The Boughton and Eckhardt algorithms, while quite subjective in their use, provide quick and easily implemented approaches for obtaining physically realistic hydrograph separations. It is observed that while the different separation techniques give varying BFI values for each of the catchments, a recharge coefficient approach developed in Ireland, when applied in conjunction with the Master recession Curve Tabulation method, predict estimates in agreement with those obtained using the NAM model, and these estimates are also consistent with the study catchments’ geology. These two separation methods, in conjunction with the NAM model, were selected to form an integrated approach to assessing BFI in catchments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As a comparative newly-invented PKM with over-constraints in kinematic chains, the Exechon has attracted extensive attention from the research society. Different from the well-recognized kinematics analysis, the research on the stiffness characteristics of the Exechon still remains as a challenge due to the structural complexity. In order to achieve a thorough understanding of the stiffness characteristics of the Exechon PKM, this paper proposed an analytical kinetostatic model by using the substructure synthesis technique. The whole PKM system is decomposed into a moving platform subsystem, three limb subsystems and a fixed base subsystem, which are connected to each other sequentially through corresponding joints. Each limb body is modeled as a spatial beam with a uniform cross-section constrained by two sets of lumped springs. The equilibrium equation of each individual limb assemblage is derived through finite element formulation and combined with that of the moving platform derived with Newtonian method to construct the governing kinetostatic equations of the system after introducing the deformation compatibility conditions between the moving platform and the limbs. By extracting the 6 x 6 block matrix from the inversion of the governing compliance matrix, the stiffness of the moving platform is formulated. The computation for the stiffness of the Exechon PKM at a typical configuration as well as throughout the workspace is carried out in a quick manner with a piece-by-piece partition algorithm. The numerical simulations reveal a strong position-dependency of the PKM's stiffness in that it is symmetric relative to a work plane due to structural features. At the last stage, the effects of some design variables such as structural, dimensional and stiffness parameters on system rigidity are investigated with the purpose of providing useful information for the structural optimization and performance enhancement of the Exechon PKM. It is worthy mentioning that the proposed methodology of stiffness modeling in this paper can also be applied to other overconstrained PKMs and can evaluate the global rigidity over workplace efficiently with minor revisions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the development and implementation of a digital simulation model of a threephase, three-leg, three-winding power transformer. The proposed model, implemented in MATLAB environment, is based on the simultaneous analysis of both magnetic and electric lumped-parameters equivalents circuits, and it is intended to study its adequacy to incorporate, at a later stage, the influences of the occurrence of windings interturn short-circuit faults. Both simulation and laboratory tests results, obtained so far, for a three-phase, 6 kVA transformer, demonstrate the adequacy of the model under normal operating conditions.