979 resultados para Lumbar Back Support
Resumo:
BACKGROUND CONTEXT: The relationships between obesity and low back pain (LBP) and lumbar disc degeneration (LDD) remain unclear. It is possible that familial factors, including genetics and early environment, affect these relationships.PURPOSE: To investigate the relationship between obesity-related measures (eg, weight, body mass index [BMI]) and LBP and LDD using twin studies, where the effect of genetics and early environment can be controlled.STUDY DESIGN: A systematic review with meta-analysis.METHODS: MEDLINE, CINAHL, Scopus, Web of Science, and EMBASE databases were searched from the earliest records to August 2014. All cross-sectional and longitudinal observational twin studies identified by the search strategy were considered for inclusion. Two investigators independently assessed the eligibility, conducted the quality assessment, and extracted the data. Metaanalyses (fixed or random effects, as appropriate) were used to pool studies'estimates of association.RESULTS: In total, 11 articles met the inclusion criteria. Five studies were included in the LBP analysis and seven in the LDD analysis. For the LBP analysis, pooling of the five studies showed that the risk of having LBP for individuals with the highest levels of BMI or weight was almost twice that of people with a lower BMI (odds ratio [OR] 1.8; 95% confidence interval [CI] 1.6-2.0; I-2 = 0%). A dose-response relationship was also identified. When genetics and the effects of a shared early environment were adjusted for using a within-pair twin case-control analysis, pooling of three studies showed a reduced but statistically positive association between obesity and prevalence of LBP (OR 1.5; 95% CI 1.1-2.1; I-2 = 0%). However, the association was further diminished and not significant (OR 1.4; 95% CI 0.8-2.3; I-2 = 0%) when pooling included two studies on monozygotic twin pairs only. Seven studies met the inclusion criteria for LDD. When familial factors were not controlled for, body weight was positively associated with LDD in all five cross-sectional studies. Only two cross-sectional studies investigated the relationship between obesity-related measures and LDD accounting for familial factors, and the results were conflicting. One longitudinal study in LBP and three longitudinal studies in LDD found no increase in risk in obese individuals, whether or not familial factors were controlled for.CONCLUSIONS: Findings from this review suggest that genetics and early environment are possible mechanisms underlying the relationship between obesity and LBP; however, a direct causal link between these conditions appears to be weak. Further longitudinal studies using the twin design are needed to better understand the complex mechanisms underlying the associations between obesity, LBP, and LDD.
Resumo:
Decreased activity of the lumbar stabilizer muscles has been identified in individuals with sway-back posture. Disuse can predispose these muscles to atrophy, which is characterized by a reduced cross-sectional area (CSA) and by fat infiltration. The aim of this study was to evaluate the amount of fat infiltration in the lumbar multifidus and lumbar erector spinae muscles as a sign of the muscle atrophy in individuals with sway-back posture, with and without low back pain. Forty-five sedentary individuals between 16 and 40 years old participated in this study. The sample was divided into three groups: symptomatic sway-back (SSBG) (n = 15), asymptomatic sway-back (ASBG) (n = 15), and control (CG) (n = 15). The individuals were first subjected to photographic analysis to classify their postures and were then referred for a magnetic resonance imaging (MRI) examination of the lumbar spine. The total (TCSA) and functional (FCSA) cross-sectional areas of the lumbar erector spinae together with lumbar multifidus and isolated lumbar multifidus muscles were measured from L1 to S1. The amount of fat infiltration was estimated as the difference between the TCSA and the FCSA. Greater fat deposition was observed in the lumbar erector spinae and lumbar multifidus muscles of the individuals in the sway-back posture groups than in the control group. Pain may have contributed to the difference in the amount of fat observed in the groups with the same postural deviation. Similarly, sway-back posture may have contributed to the tissue substitution relative to the control group independently of low back pain. The results of this study indicate that individuals with sway-back posture may be susceptible to morphological changes in their lumbar erector spinae and lumbar multifidus muscles, both due to the presence of pain and as a consequence of their habitual posture.
Resumo:
INTRODUCTION Surgical decompression for lumbar spinal stenosis (LSS) has been associated with poorer outcomes in patients with pronounced low back pain (LBP) as compared to patients with predominant leg pain. This cross registry study assessed potential benefits of the interlaminar coflex® device as an add-on to bony decompression alone. METHODS Patients with lumbar decompression plus coflex® (SWISSspine registry) were compared with decompressed controls (Spine Tango registry). Inclusion criteria were LSS and a preoperative back pain level of ≥5 points. 1:1 propensity score-based matching was performed. Outcome measures were back and leg pain relief, COMI score improvement, patient satisfaction, complication, and revision rates. RESULTS 50 matched pairs without residual significant differences but age were created. At the 7-9 months follow-up interval the coflex® group had higher back (p=0.014) and leg pain relief (p<0.001) and COMI score improvement (p=0.029) than the decompression group. Patient satisfaction was 90% in both groups. No revision was documented in the coflex® and one in the decompression group (2.0%). DISCUSSION In the short-term, lumbar decompression with coflex® compared with decompression alone in patients with LSS and pronounced LBP at baseline is a safe and effective treatment option that appears beneficial regarding clinical and functional outcomes. However, residual confounding of non-measured covariables may have partially influenced our findings. Also, despite careful inclusion and exclusion of cases the cross registry approach introduces a potential for selection bias that we could not totally control for and that makes additional studies necessary.
Resumo:
Exercise is commonly used in the management of chronic musculoskeletal conditions, including chronic low back pain (CLBP). The focus of exercise is varied and may include parameters ranging from strength and endurance training, to specific training of muscle coordination and control. The assumption underpinning these approaches is that improved neuromuscular function will restore or augment the control and support of the spine and pelvis. In a biomechanical model of CLBP, which assumes that pain recurrence is caused by repeated mechanical irritation of pain sensitive structures [1], it is proposed that this improved control and stability would reduce mechanical irritation and lead to pain relief [1]. Although this model provides explanation for the chronicity of LBP, perpetuation of pain is more complex, and contemporary neuroscience holds the view that chronic pain is mediated by a range of changes including both peripheral (eg, peripheral sensitization) and central neuroplastic changes [2]. Although this does not exclude the role of improved control of the lumbar spine and pelvis in management of CLBP, particularly when there is peripheral sensitization, it highlights the need to look beyond outdated simplistic models. One factor that this information highlights is that the refinement of control and coordination may be more important than simple strength and endurance training for the trunk muscles. The objective of this article is to discuss the rationale for core stability exercise in the management of CLBP, to consider critical factors for its implementation, and to review evidence for efficacy of the approach.
Resumo:
Intra-abdominal pressure (IAP) increases during many tasks and has been argued to increase stability and stiffness of the spine. Although several studies have shown a relationship between the IAP increase and spinal stability, it has been impossible to determine whether this augmentation of mechanical support for the spine is due to the increase in IAP or the abdominal muscle activity which contributes to it. The present study determined whether spinal stiffness increased when IAP increased without concurrent activity of the abdominal and back extensor muscles. A sustained increase in IAP was evoked by tetanic stimulation of the phrenic nerves either. unilaterally or bilaterally at 20 Hz (for 5 s) via percutaneous electrodes in three subjects. Spinal stiffness was measured as the force required to displace an indentor over the L4 or L2 spinous process with the subjects lying prone. Stiffness was measured as the slope of the regression line fitted to the linear region of the force-displacement curve. Tetanic stimulation of the diaphragm increased IAP by 27-61% of a maximal voluntary pressure increase and increased the stiffness of the spine by 8-31% of resting levels. The increase in spinal stiffness was positively correlated with the size of the IAP increase. IAP increased stiffness at L2 and L4 level. The results of this:study provide evidence that the stiffness of the lumbar spine is increased when IAP is elevated. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Resumo:
International audience
Resumo:
Combining information on kinetics and kinematics of the trunk during gait is important for both clinical and research purposes, since it can help in better understanding the mechanisms behind changes in movement patterns in chronic low back pain patients. Although three-dimensional gait analysis has been used to evaluate chronic low back pain and healthy individuals, the reliability and measurement error of this procedure have not been fully established. The main purpose of this thesis is to gain a better understanding about the differences in the biomechanics of the trunk and lower limbs during gait, in patients and healthy individuals. To achieve these aims, three studies were developed. The first two, adopted a prospective design and focused on the reliability and measurement error of gait analysis. In these test-retest studies, chronic low back pain and healthy individuals were submitted to a gait assessment protocol, with two distinct evaluation moments, separated by one week. Gait data was collected using a 13-camera opto-electronic system and three force platforms. Data analysis included the computation of time-distance parameters, as well as the peak values for lower limb and trunk joint angles/moments. The third study followed a cross sectional design, where gait in chronic low back pain individuals was compared with matched controls. Step-to-step variability of the thoracic, lumbar and hips was calculated, and step-to-step deviations of these segments from their average pattern (residual rotations) were correlated to each other. The reliability studies in this thesis show that three-dimensional gait analysis is a reliable and consistent procedure for both chronic low back pain and healthy individuals. The results suggest varied reliability indices for multi-segment trunk joint angles, joint moments and time-distance parameters during gait, together with an acceptable level of error (particularly regarding sagittal plane). Our findings also show altered stride-to-stride variability of lumbar and thoracic segments and lower trunk joint moments in patients. These kinematic and kinetic results lend support to the notion that chronic low back pain individuals exhibit a protective movement strategy.
Resumo:
Universidade Estadual de Campinas. Faculdade de Educação Física
Resumo:
Prolonged standing has been associated with the onset of low back pain symptoms in working populations. So far, it is unknown how individuals with chronic low back pain (CLBP) behave during prolonged unconstrained standing (PS). The aim of the present study was to analyze the control of posture by subjects with CLBP during PS in comparison to matched healthy adults. The center of pressure (COP) position of 12 CLBP subjects and 12 matched healthy controls was recorded in prolonged standing (30 min) and quiet stance tasks (60 s) on a force plate. The number and amplitude of COP patterns, the root mean square (RMS), speed, and frequency of COP sway were analyzed. Statistical analyses showed that CLBP subjects produced less Postural changes in the antero-posterior direction with decreased postural sway during the prolonged standing task in comparison to the healthy group. Only CLBP subjects were influenced by the prolonged standing task, as demonstrated by their increased COP RMS, COP speed and COP frequency in the quiet standing trial after the prolonged standing task in comparison to the pre-PS trial. The present study provides additional evidence that individuals with CLBP might have altered sensory-motor function. Their inability to generate responses similar to those of healthy subjects during prolonged standing may contribute to CLBP persistence or an increase risk of recurrent back pain episodes. Moreover, quantification of postural changes during prolonged standing could be useful to identify CLBP subjects prone to postural control deficits. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Sousa FAEF, Colhado OCG - Lumbar Epidural Anesthesia in the Treatment of Discal Lombosciatalgia: A Comparative Clinical Study between Methylprednisolone and Methylprednisolone with Levobupivacaine. Background and objectives: Lumbar epidural technique has been used in the treatment of lombosciatalgia since 1953. In most cases, methylprednisolone is used along with a local anesthetic, and it is not known whether the isolated use of methylprednisolone is equally effective in relieving symptoms. The objective of this study was to compare the efficacy of two different solutions - methylprednisolone with saline and methylprednisolone with levobupivacaine injected in the epidural space to heal lombosciatalgia secondary to lumbar herniated disk. Methods: Sixty individuals ASA I and II, of both genders, ages 18 to 65 years participated in this randomized, double-blind study over a period of one year. They underwent interlaminar lumbar epidural analgesia without radioscopic control to heal a lombosciatalgia and they were divided into two groups: G-M (methylprednisolone + saline) and G-M + L (methylprednisolone + levobupivacaine + saline) both at a volume of 10 mL. Diagnosis was based on history, physical exam, and imaging exam (MRI). The Visual Analogue Scale (VAS) was applied in a total of two blockades, 15 days apart. Results: A reduction in pain severity was observed in the methylprednisolone-levobupivacaine group, but without statistical significance. Conclusions: The analgesic efficacy of the G-M + L solution was superior to that of the G-M solution in the treatment of discal lombosciatalgia regarding the shorter time to onset of analgesia, but this was not significant at the time of discharge, and both solutions were effective in the treatment of discal lombosciatalgia.
Resumo:
The temporal parameters of the response of the trunk muscles associated with movement of the lower limb were investigated in people with and without low back pain (LBP). The weight shift component of the task was completed voluntarily prior to a stimulus to move to allow investigation of the movement component of the response. In the control subjects the onset of electromyographic (EMG) activity of all trunk muscles preceded that of the muscle responsible for limb movement, thus contributing to the feed forward postural response. The EMG onset of transversus abdominis was delayed in the LBP subjects with movement in each direction, while the EMG onsets of rectus abdominis, erector spinae, and oblique abdominal muscles were delayed with specific movement directions. This result provides evidence of a change in the postural control of the trunk in people with LBP.