989 resultados para Low tension oxigen


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work intends to know the most types of ignition systems, studying its history, the way it works, applications and some examples. The assembly of a distributor less ignition system is also required. All vehicles powered by internal combustion engines need an ignition system that allows this engine to ignite the air-fuel mixture using its ignition system in the best possible manner. The main goal of an ignition system is to obtain a spark having enough energy to start the chemical reaction of the oxygen and the fuel. It took a study dealing with the various types of ignition systems since their creation at the beginning of the last century until 2015. The work starts studying the high tension magneto ignition system and later together with the low tension ignition system, going on with the conventional ignition system and finally accomplishing with the various types of electronic ignition systems. It was studied and implemented an electronic circuit to power a double spark ignition system also known as wasted spark ignition system. This circuit was assembled with an electric pulse generator and powered mechanically by a dc electric motor of the variable rpm type

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work intends to know the most types of ignition systems, studying its history, the way it works, applications and some examples. The assembly of a distributor less ignition system is also required. All vehicles powered by internal combustion engines need an ignition system that allows this engine to ignite the air-fuel mixture using its ignition system in the best possible manner. The main goal of an ignition system is to obtain a spark having enough energy to start the chemical reaction of the oxygen and the fuel. It took a study dealing with the various types of ignition systems since their creation at the beginning of the last century until 2015. The work starts studying the high tension magneto ignition system and later together with the low tension ignition system, going on with the conventional ignition system and finally accomplishing with the various types of electronic ignition systems. It was studied and implemented an electronic circuit to power a double spark ignition system also known as wasted spark ignition system. This circuit was assembled with an electric pulse generator and powered mechanically by a dc electric motor of the variable rpm type

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Catenary risers can present during installation a very low tension close to seabed, which combined with torsion moment can lead to a structural instability, resulting in a loop. This is undesirable once it is possible that the loop turns into a kink, creating damage. This work presents a numerical methodology to analyze the conditions of loop formation in catenary risers. Stability criteria were applied to finite element models, including geometric nonlinearities and contact constraint due to riser-seabed interaction. The classical Greenhill's formula was used to predict the phenomenon and parametric analysis shows a “universal plot” able to predict instability in catenaries using a simple equation that can be applied for typical risers installation conditions and, generically, for catenary lines under torsion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Arch bridge structural solution has been known for centuries, in fact the simple nature of arch that require low tension and shear strength was an advantage as the simple materials like stone and brick were the only option back in ancient centuries. By the pass of time especially after industrial revolution, the new materials were adopted in construction of arch bridges to reach longer spans. Nowadays one long span arch bridge is made of steel, concrete or combination of these two as "CFST", as the result of using these high strength materials, very long spans can be achieved. The current record for longest arch belongs to Chaotianmen bridge over Yangtze river in China with 552 meters span made of steel and the longest reinforced concrete type is Wanxian bridge which also cross the Yangtze river through a 420 meters span. Today the designer is no longer limited by span length as long as arch bridge is the most applicable solution among other approaches, i.e. cable stayed and suspended bridges are more reasonable if very long span is desired. Like any super structure, the economical and architectural aspects in construction of a bridge is extremely important, in other words, as a narrower bridge has better appearance, it also require smaller volume of material which make the design more economical. Design of such bridge, beside the high strength materials, requires precise structural analysis approaches capable of integrating the combination of material behaviour and complex geometry of structure and various types of loads which may be applied to bridge during its service life. Depend on the design strategy, analysis may only evaluates the linear elastic behaviour of structure or consider the nonlinear properties as well. Although most of structures in the past were designed to act in their elastic range, the rapid increase in computational capacity allow us to consider different sources of nonlinearities in order to achieve a more realistic evaluations where the dynamic behaviour of bridge is important especially in seismic zones where large movements may occur or structure experience P - _ effect during the earthquake. The above mentioned type of analysis is computationally expensive and very time consuming. In recent years, several methods were proposed in order to resolve this problem. Discussion of recent developments on these methods and their application on long span concrete arch bridges is the main goal of this research. Accordingly available long span concrete arch bridges have been studied to gather the critical information about their geometrical aspects and properties of their materials. Based on concluded information, several concrete arch bridges were designed for further studies. The main span of these bridges range from 100 to 400 meters. The Structural analysis methods implemented in in this study are as following: Elastic Analysis: Direct Response History Analysis (DRHA): This method solves the direct equation of motion over time history of applied acceleration or imposed load in linear elastic range. Modal Response History Analysis (MRHA): Similar to DRHA, this method is also based on time history, but the equation of motion is simplified to single degree of freedom system and calculates the response of each mode independently. Performing this analysis require less time than DRHA. Modal Response Spectrum Analysis (MRSA): As it is obvious from its name, this method calculates the peak response of structure for each mode and combine them using modal combination rules based on the introduced spectra of ground motion. This method is expected to be fastest among Elastic analysis. Inelastic Analysis: Nonlinear Response History Analysis (NL-RHA): The most accurate strategy to address significant nonlinearities in structural dynamics is undoubtedly the nonlinear response history analysis which is similar to DRHA but extended to inelastic range by updating the stiffness matrix for every iteration. This onerous task, clearly increase the computational cost especially for unsymmetrical buildings that requires to be analyzed in a full 3D model for taking the torsional effects in to consideration. Modal Pushover Analysis (MPA): The Modal Pushover Analysis is basically the MRHA but extended to inelastic stage. After all, the MRHA cannot solve the system of dynamics because the resisting force fs(u; u_ ) is unknown for inelastic stage. The solution of MPA for this obstacle is using the previously recorded fs to evaluate system of dynamics. Extended Modal Pushover Analysis (EMPA): Expanded Modal pushover is a one of very recent proposed methods which evaluates response of structure under multi-directional excitation using the modal pushover analysis strategy. In one specific mode,the original pushover neglect the contribution of the directions different than characteristic one, this is reasonable in regular symmetric building but a structure with complex shape like long span arch bridges may go through strong modal coupling. This method intend to consider modal coupling while it take same time of computation as MPA. Coupled Nonlinear Static Pushover Analysis (CNSP): The EMPA includes the contribution of non-characteristic direction to the formal MPA procedure. However the static pushovers in EMPA are performed individually for every mode, accordingly the resulted values from different modes can be combined but this is only valid in elastic phase; as soon as any element in structure starts yielding the neutral axis of that section is no longer fixed for both response during the earthquake, meaning the longitudinal deflection unavoidably affect the transverse one or vice versa. To overcome this drawback, the CNSP suggests executing pushover analysis for governing modes of each direction at the same time. This strategy is estimated to be more accurate than MPA and EMPA, moreover the calculation time is reduced because only one pushover analysis is required. Regardless of the strategy, the accuracy of structural analysis is highly dependent on modelling and numerical integration approaches used in evaluation of each method. Therefore the widely used Finite Element Method is implemented in process of all analysis performed in this research. In order to address the study, chapter 2, starts with gathered information about constructed long span arch bridges, this chapter continuous with geometrical and material definition of new models. Chapter 3 provides the detailed information about structural analysis strategies; furthermore the step by step description of procedure of all methods is available in Appendix A. The document ends with the description of results and conclusion of chapter 4.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Chromosome bi-orientation at the metaphase spindle is essential for precise segregation of the genetic material. The process is error-prone, and error-correction mechanisms exist to switch misaligned chromosomes to the correct, bi-oriented configuration. Here, we analyze several possible dynamical scenarios to explore how cells might achieve correct bi-orientation in an efficient and robust manner. We first illustrate that tension-mediated feedback between the sister kinetochores can give rise to a bistable switch, which allows robust distinction between a loose attachment with low tension and a strong attachment with high tension. However, this mechanism has difficulties in explaining how bi-orientation is initiated starting from unattached kinetochores. We propose four possible mechanisms to overcome this problem (exploiting molecular noise; allowing an efficient attachment of kinetochores already in the absence of tension; a trial-and-error oscillation; and a stochastic bistable switch), and assess their impact on the bi-orientation process. Based on our results and supported by experimental data, we put forward a trial-and-error oscillation and a stochastic bistable switch as two elegant mechanisms with the potential to promote bi-orientation both efficiently and robustly.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Refractive index and structural characteristics of optical polymers are strongly influenced by the thermal history of the material. Polymer optical fibres (POF) are drawn under tension, resulting in axial orientation of the polymer molecular chains due to their susceptibility to align in the fibre direction. This change in orientation from the drawing process results in residual strain in the fibre and also affects the transparency and birefringence of the material (1-3). PMMA POF has failure strain as high as over 100%. POF has to be drawn under low tension to achieve this value. The drawing tension affects the magnitude of molecular alignment along the fibre axis, thus affecting the failure strain. The higher the tension the lower the failure stain will be. However, the properties of fibre drawn under high tension can approach that of fibre drawn under low tension by means of an annealing process. Annealing the fibre can generally optimise the performance of POF while keeping most advantages intact. Annealing procedures can reduce index difference throughout the bulk and also reduce residual stress that may cause fracture or distortion. POF can be annealed at temperatures approaching the glass transition temperature (Tg) of the polymer to produce FBG with a permanent blue Bragg wave-length shift at room temperature. At this elevated temperature segmental motion in the structure results in a lower viscosity. The material softens and the molecular chains relax from the axial orientation causing shrinking of the fibre. The large attenuation of typically 1dB/cm in the 1550nm spectral region of PMMA POF has limited FBG lengths to less than 10cm. The more expensive fluorinated polymers with lower absorption have had no success as FBG waveguides. Bragg grating have been inscribed onto various POF in the 800nm spectral region using a 30mW continuous wave 325nm helium cadmium laser, with a much reduced attenuation coefficient of 10dB/m (5). Fabricating multiplexed FBGs in the 800nm spectral region in TOPAS and PMMA POF consistently has lead to fabrication of multiplexed FBG in the 700nm spectral region by a method of prolonged annealing. The Bragg wavelength shift of gratings fabricated in PMMA fibre at 833nm and 867nm was monitored whilst the POF was thermally annealed at 80°C. Permanent shifts exceeding 80nm into the 700nm spectral region was attained by both gratings on the fibre. The large permanent shift creates the possibility of multiplexed Bragg sensors operating over a broad range. -------------------------------------------------------------------------------------------------------------------- 1. Pellerin C, Prud'homme RE, Pézolet M. Effect of thermal history on the molecular orientation in polystyrene/poly (vinyl methyl ether) blends. Polymer. 2003;44(11):3291-7. 2. Dvoránek L, Machová L, Šorm M, Pelzbauer Z, Švantner J, Kubánek V. Effects of drawing conditions on the properties of optical fibers made from polystyrene and poly (methyl methacrylate). Die Angewandte Makromolekulare Chemie. 1990;174(1):25-39. 3. Dugas J, Pierrejean I, Farenc J, Peichot JP. Birefringence and internal stress in polystyrene optical fibers. Applied optics. 1994;33(16):3545-8. 4. Jiang C, Kuzyk MG, Ding JL, Johns WE, Welker DJ. Fabrication and mechanical behavior of dye-doped polymer optical fiber. Journal of applied physics. 2002;92(1):4-12. 5. Johnson IP, Webb DJ, Kalli K, Yuan W, Stefani A, Nielsen K, et al., editors. Polymer PCF Bragg grating sensors based on poly (methyl methacrylate) and TOPAS cyclic olefin copolymer2011: SPIE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Refractive index and structural characteristics of optical polymers are strongly influenced by the thermal history of the material. Polymer optical fibres (POF) are drawn under tension, resulting in axial orientation of the polymer molecular chains due to their susceptibility to align in the fibre direction. This change in orientation from the drawing process results in residual strain in the fibre and also affects the transparency and birefringence of the material (1-3). PMMA POF has failure strain as high as over 100%. POF has to be drawn under low tension to achieve this value. The drawing tension affects the magnitude of molecular alignment along the fibre axis, thus affecting the failure strain. The higher the tension the lower the failure stain will be. However, the properties of fibre drawn under high tension can approach that of fibre drawn under low tension by means of an annealing process. Annealing the fibre can generally optimise the performance of POF while keeping most advantages intact. Annealing procedures can reduce index difference throughout the bulk and also reduce residual stress that may cause fracture or distortion. POF can be annealed at temperatures approaching the glass transition temperature (Tg) of the polymer to produce FBG with a permanent blue Bragg wave-length shift at room temperature. At this elevated temperature segmental motion in the structure results in a lower viscosity. The material softens and the molecular chains relax from the axial orientation causing shrinking of the fibre. The large attenuation of typically 1dB/cm in the 1550nm spectral region of PMMA POF has limited FBG lengths to less than 10cm. The more expensive fluorinated polymers with lower absorption have had no success as FBG waveguides. Bragg grating have been inscribed onto various POF in the 800nm spectral region using a 30mW continuous wave 325nm helium cadmium laser, with a much reduced attenuation coefficient of 10dB/m (5). Fabricating multiplexed FBGs in the 800nm spectral region in TOPAS and PMMA POF consistently has lead to fabrication of multiplexed FBG in the 700nm spectral region by a method of prolonged annealing. The Bragg wavelength shift of gratings fabricated in PMMA fibre at 833nm and 867nm was monitored whilst the POF was thermally annealed at 80°C. Permanent shifts exceeding 80nm into the 700nm spectral region was attained by both gratings on the fibre. The large permanent shift creates the possibility of multiplexed Bragg sensors operating over a broad range. -------------------------------------------------------------------------------------------------------------------- 1. Pellerin C, Prud'homme RE, Pézolet M. Effect of thermal history on the molecular orientation in polystyrene/poly (vinyl methyl ether) blends. Polymer. 2003;44(11):3291-7. 2. Dvoránek L, Machová L, Šorm M, Pelzbauer Z, Švantner J, Kubánek V. Effects of drawing conditions on the properties of optical fibers made from polystyrene and poly (methyl methacrylate). Die Angewandte Makromolekulare Chemie. 1990;174(1):25-39. 3. Dugas J, Pierrejean I, Farenc J, Peichot JP. Birefringence and internal stress in polystyrene optical fibers. Applied optics. 1994;33(16):3545-8. 4. Jiang C, Kuzyk MG, Ding JL, Johns WE, Welker DJ. Fabrication and mechanical behavior of dye-doped polymer optical fiber. Journal of applied physics. 2002;92(1):4-12. 5. Johnson IP, Webb DJ, Kalli K, Yuan W, Stefani A, Nielsen K, et al., editors. Polymer PCF Bragg grating sensors based on poly (methyl methacrylate) and TOPAS cyclic olefin copolymer2011: SPIE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Scalar particles coupled to the Standard Model fields through a disformal coupling arise in different theories, such as massive gravity or braneworld models. We will review the main phenomenology associated with such particles. Distinctive disformal signatures could be measured at colliders and with astrophysical observations. The phenomeno-logical relevance of the disformal coupling demands the introduction of a set of symmetries, which may ensure the stability of these new degrees of freedom. In such a case, they constitute natural dark matter candidates since they are generally massive and weakly coupled. We will illustrate these ideas by paying particular attention to the branon case, since these questions arise naturally in braneworld models with low tension, where they were first discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

1. Mytilus edulis acclimated its rates of oxygen consumption when maintained at reduced oxygen tensions for periods in excess of five days. 2. Acclimation was complete down to approximately 55 mm Hg PO2 at slightly lower oxygen tensions (51, 49 and 43 mm Hg) acclimation was complete in one experiment and partial in two others. 3. The capacity to acclimate oxygen consumption was not affected by a reduction in ration nor by an increase in temperature (10 to 22 °C). 4. Mussels that were acclimated to reduced oxygen tension (40–80 mm Hg), and then exposed to P O 2 of less than 20 mm Hg for two or five hours, had depressed rates of oxygen uptake when subsequently “recovered” to 40–80 mm Hg. 5. These results are discussed in the context of biochemical studies of anaerobic metabolism in mussels from the same experiments.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The influence of low-strain deformation behavior on curl and springback in advanced high strength steels (AHSS) was assessed using a bend-under-tension test. The effect of yielding behavior on curl and springback was examined by heat-treating two dual-phase steels to induce yield point elongation, while keeping a relatively constant tensile strength and a constant sheet thickness. A dual-phase and TRIP steel with similar initial thickness and tensile strengths were also examined to investigate the effect of work-hardening on curl and springback. It is shown that while current understanding limits prediction of curl and springback in bending under tension using only the initial sheet thickness and tensile strength, both the yielding and work-hardening behavior can affect the results. Explanations for these effects are proposed in terms of the discontinuous yielding and flow stress in the materials.


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Disclosed are emulsions and microcapsules that comprise one or more substances with a low interfacial tension. Methods of making the emulsions and microcapsules as well as methods of using them are also disclosed. In some embodiments microbial oil is used. In some embodiments marine oil is used. In some embodiments the emulsion has a pH of greater than 6,0. In some embodiments the emulsion has a pH of less than 5,0.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: Improved pregnancy, implantation, and birth rates have been reported after the use of reduced O2 concentration during embryo culture, mainly due to a reduction of the cumulative detrimental effects of reactive oxygen species. However, some studies have failed to report any positive effects. The objective of this meta-analysis was to evaluate the effect of a low-O2 environment on IVF/intracytoplasmic sperm injection (ICSI) outcomes.Methods: All available published and ongoing randomised trials that compared the effects of low (similar to 5%; OC similar to 5) and atmospheric (similar to 20%; OC similar to 20) oxygen concentrations on IVF/ICSI outcomes were included. Search strategies included online surveys of databases from 1980 to 2011. The outcomes measured were fertilisation rate, implantation rate and ongoing pregnancy rates. The fixed effects model was used to calculate the odds ratio.Results: Seven studies were included in this analysis. The pooled fertilisation rate did not differ significantly (P = 0.54) between the group of oocytes cultured at low O2 tension and the group at atmospheric O2 tension. Concerning all cycles, the implantation (P = 0.06) and ongoing pregnancy (P = 0.051) rates were not significantly different between the group receiving transferred sets containing only OC similar to 5 embryos and the group receiving transferred sets with only OC similar to 20 embryos. In a meta-analysis performed for only those trials in which embryos were transferred on day 2/3, implantation (P = 0.63) and ongoing pregnancy (P = 0.19) rates were not significantly different between the groups. In contrast, when a meta-analysis was performed using only trials in which embryos were transferred on days 5 and 6 (at the blastocyst stage), the group with transferred sets of only OC similar to 5 embryos showed a statistically significantly higher implantation rate (P = 0.006) than the group receiving transferred sets with only OC similar to 20 embryos, although the ongoing pregnancy (P = 0.19) rates were not significantly different between the groups.Conclusions: Despite some promising results, it seems too early to conclude that low O2 culture has an effect on IVF outcome. Additional randomised controlled trials are necessary before evidence-based recommendations can be provided. It should be emphasised that the present meta-analysis does not provide any evidence that low oxygen concentration is unnecessary.