971 resultados para Low bandwidth ECG signals


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the analysis of heart rate variability (HRV) are used temporal series that contains the distances between successive heartbeats in order to assess autonomic regulation of the cardiovascular system. These series are obtained from the electrocardiogram (ECG) signal analysis, which can be affected by different types of artifacts leading to incorrect interpretations in the analysis of the HRV signals. Classic approach to deal with these artifacts implies the use of correction methods, some of them based on interpolation, substitution or statistical techniques. However, there are few studies that shows the accuracy and performance of these correction methods on real HRV signals. This study aims to determine the performance of some linear and non-linear correction methods on HRV signals with induced artefacts by quantification of its linear and nonlinear HRV parameters. As part of the methodology, ECG signals of rats measured using the technique of telemetry were used to generate real heart rate variability signals without any error. In these series were simulated missing points (beats) in different quantities in order to emulate a real experimental situation as accurately as possible. In order to compare recovering efficiency, deletion (DEL), linear interpolation (LI), cubic spline interpolation (CI), moving average window (MAW) and nonlinear predictive interpolation (NPI) were used as correction methods for the series with induced artifacts. The accuracy of each correction method was known through the results obtained after the measurement of the mean value of the series (AVNN), standard deviation (SDNN), root mean square error of the differences between successive heartbeats (RMSSD), Lomb\'s periodogram (LSP), Detrended Fluctuation Analysis (DFA), multiscale entropy (MSE) and symbolic dynamics (SD) on each HRV signal with and without artifacts. The results show that, at low levels of missing points the performance of all correction techniques are very similar with very close values for each HRV parameter. However, at higher levels of losses only the NPI method allows to obtain HRV parameters with low error values and low quantity of significant differences in comparison to the values calculated for the same signals without the presence of missing points.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis submitted in the fulfilment of the requirements for the Degree of Master in Electronic and Telecomunications Engineering

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrocardiographic (ECG) signals are emerging as a recent trend in the field of biometrics. In this paper, we propose a novel ECG biometric system that combines clustering and classification methodologies. Our approach is based on dominant-set clustering, and provides a framework for outlier removal and template selection. It enhances the typical workflows, by making them better suited to new ECG acquisition paradigms that use fingers or hand palms, which lead to signals with lower signal to noise ratio, and more prone to noise artifacts. Preliminary results show the potential of the approach, helping to further validate the highly usable setups and ECG signals as a complementary biometric modality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Check Your Biosignals Here initiative (CYBHi) was developed as a way of creating a dataset and consistently repeatable acquisition framework, to further extend research in electrocardiographic (ECG) biometrics. In particular, our work targets the novel trend towards off-the-person data acquisition, which opens a broad new set of challenges and opportunities both for research and industry. While datasets with ECG signals collected using medical grade equipment at the chest can be easily found, for off-the-person ECG data the solution is generally for each team to collect their own corpus at considerable expense of resources. In this paper we describe the context, experimental considerations, methods, and preliminary findings of two public datasets created by our team, one for short-term and another for long-term assessment, with ECG data collected at the hand palms and fingers. (C) 2013 Elsevier Ireland Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrocardiography (ECG) biometrics is emerging as a viable biometric trait. Recent developments at the sensor level have shown the feasibility of performing signal acquisition at the fingers and hand palms, using one-lead sensor technology and dry electrodes. These new locations lead to ECG signals with lower signal to noise ratio and more prone to noise artifacts; the heart rate variability is another of the major challenges of this biometric trait. In this paper we propose a novel approach to ECG biometrics, with the purpose of reducing the computational complexity and increasing the robustness of the recognition process enabling the fusion of information across sessions. Our approach is based on clustering, grouping individual heartbeats based on their morphology. We study several methods to perform automatic template selection and account for variations observed in a person's biometric data. This approach allows the identification of different template groupings, taking into account the heart rate variability, and the removal of outliers due to noise artifacts. Experimental evaluation on real world data demonstrates the advantages of our approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Behavioral biometrics is one of the areas with growing interest within the biosignal research community. A recent trend in the field is ECG-based biometrics, where electrocardiographic (ECG) signals are used as input to the biometric system. Previous work has shown this to be a promising trait, with the potential to serve as a good complement to other existing, and already more established modalities, due to its intrinsic characteristics. In this paper, we propose a system for ECG biometrics centered on signals acquired at the subject's hand. Our work is based on a previously developed custom, non-intrusive sensing apparatus for data acquisition at the hands, and involved the pre-processing of the ECG signals, and evaluation of two classification approaches targeted at real-time or near real-time applications. Preliminary results show that this system leads to competitive results both for authentication and identification, and further validate the potential of ECG signals as a complementary modality in the toolbox of the biometric system designer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabalho surge no âmbito da área Electromedicina, uma componente da Engenharia Electrotécnica cada vez mais influente e em permanente desenvolvimento, existindo nela uma constante inovação e tentativa de desenvolvimento e aplicação de novas tecnologias. Este projecto possui como principal objectivo o estudo aprofundado das aplicações da técnica SVD (Singular Value Decomposition), uma poderosa ferramenta matemática que permite a manipulação de sinais através da decomposição de matrizes, ao caso específico do sinal eléctrico obtido através de um electrocardiograma (ECG). Serão discriminados os princípios da operação do sistema eléctrico cardíaco, as principais componentes do sinal ECG (a onda P, o complexo QRS e a onda T) e os fundamentos da técnica SVD. A última fase deste trabalho consistirá na aplicação, em ambiente Matlab, da técnica SVD a sinais ECG concretos, com enfase na sua filtragem, para efeitos de remoção de ruído. De modo verificar as suas vantagens e desvantagens face a outras técnicas, os resultados da filtragem por SVD serão comparados com aqueles obtidos, em condições similares, através da aplicação de um filtro FIR de coeficientes estáticos e de um filtro adaptativo iterativo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To assess the effect of the oscillatory breathing on the variability of RR intervals (VRR) and on prognostic significance after one year follow-up in subjects with left ventricular global systolic dysfunction. METHODS: We studied 76 subjects, whose age ranged from 40 to 80 years, paired for age and gender, divided into two groups: group I - 34 healthy subjects; group II - 42 subjects with left ventricular global systolic dysfunction (ejection fraction < 0.40). The ECG signals were acquired during 600s in supine position, and analyzed the variation of the thoracic amplitude and the VRR. Clinical and V-RR variables were applied into a logistic multivariate model to foretell survival after one year follow-up. RESULTS: Oscillatory breathing was detected in 35.7% of subjects in vigil state of group II, with a concentration of the spectral power in the very low frequency band, and was independent of the presence of diabetes, functional class, ejection fraction, cause of ventricular dysfunction and survival after one year follow-up. In the logistic regression model, ejection fraction was the only independent variable to predict survival. CONCLUSION: 1) Oscillatory breathing pattern is frequent during wakefulness in the left ventricular global systolic dysfunction and concentrates spectral power in the very low band of V-RR; 2) it does not relate to severity and cause of left ventricular dysfunction; 3) ejection fraction is the only independent predictive variable for survival in this group of subjects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Remarkably, only a few low molecular mass signals, including jasmonic acid, ethylene and salicylic acid, upregulate the expression of scores of defense-related genes. Using these regulators, the plant fine-tunes its defense gene expression against aggressors which, in some cases, may be able to disrupt or amplify plant defense signal pathways to their own ends.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the present study was to compare heart rate variability (HRV) at rest and during exercise using a temporal series obtained with the Polar S810i monitor and a signal from a LYNX® signal conditioner (BIO EMG 1000 model) with a channel configured for the acquisition of ECG signals. Fifteen healthy subjects aged 20.9 ± 1.4 years were analyzed. The subjects remained at rest for 20 min and performed exercise for another 20 min with the workload selected to achieve 60% of submaximal heart rate. RR series were obtained for each individual with a Polar S810i instrument and with an ECG analyzed with a biological signal conditioner. The HRV indices (rMSSD, pNN50, LFnu, HFnu, and LF/HF) were calculated after signal processing and analysis. The unpaired Student t-test and intraclass correlation coefficient were used for data analysis. No statistically significant differences were observed when comparing the values analyzed by means of the two devices for HRV at rest and during exercise. The intraclass correlation coefficient demonstrated satisfactory correlation between the values obtained by the devices at rest (pNN50 = 0.994; rMSSD = 0.995; LFnu = 0.978; HFnu = 0.978; LF/HF = 0.982) and during exercise (pNN50 = 0.869; rMSSD = 0.929; LFnu = 0.973; HFnu = 0.973; LF/HF = 0.942). The calculation of HRV values by means of temporal series obtained from the Polar S810i instrument appears to be as reliable as those obtained by processing the ECG signal captured with a signal conditioner.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis lays importance in the investigation on the multiferroic and thermooelectric properties of selected representatives of low bandwidth and intermediate band width manganites. The first candidate, Strontium doped Gd manganite, is prepared by wet solid state reaction method and the second candidate, Na doped La manganite, by citrate gel method. In addition to the above mentioned properties, magneto resistance and dielectric properties are investigated. Using dielectric spectroscopic the dispersion parameters are correlated to the relaxation mechanisms and an attempt is made to obtain the grain and grain boundary contribution to the impedance of the sample through impedance spectroscopy studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work compares and contrasts results of classifying time-domain ECG signals with pathological conditions taken from the MITBIH arrhythmia database. Linear discriminant analysis and a multi-layer perceptron were used as classifiers. The neural network was trained by two different methods, namely back-propagation and a genetic algorithm. Converting the time-domain signal into the wavelet domain reduced the dimensionality of the problem at least 10-fold. This was achieved using wavelets from the db6 family as well as using adaptive wavelets generated using two different strategies. The wavelet transforms used in this study were limited to two decomposition levels. A neural network with evolved weights proved to be the best classifier with a maximum of 99.6% accuracy when optimised wavelet-transform ECG data wits presented to its input and 95.9% accuracy when the signals presented to its input were decomposed using db6 wavelets. The linear discriminant analysis achieved a maximum classification accuracy of 95.7% when presented with optimised and 95.5% with db6 wavelet coefficients. It is shown that the much simpler signal representation of a few wavelet coefficients obtained through an optimised discrete wavelet transform facilitates the classification of non-stationary time-variant signals task considerably. In addition, the results indicate that wavelet optimisation may improve the classification ability of a neural network. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper discusses ECG signal classification after parametrizing the ECG waveforms in the wavelet domain. Signal decomposition using perfect reconstruction quadrature mirror filter banks can provide a very parsimonious representation of ECG signals. In the current work, the filter parameters are adjusted by a numerical optimization algorithm in order to minimize a cost function associated to the filter cut-off sharpness. The goal consists of achieving a better compromise between frequency selectivity and time resolution at each decomposition level than standard orthogonal filter banks such as those of the Daubechies and Coiflet families. Our aim is to optimally decompose the signals in the wavelet domain so that they can be subsequently used as inputs for training to a neural network classifier.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the present study was to compare heart rate variability (HRV) at rest and during exercise using a temporal series obtained with the Polar S810i monitor and a signal from a LYNX® signal conditioner (BIO EMG 1000 model) with a channel configured for the acquisition of ECG signals. Fifteen healthy subjects aged 20.9 ± 1.4 years were analyzed. The subjects remained at rest for 20 min and performed exercise for another 20 min with the workload selected to achieve 60% of submaximal heart rate. RR series were obtained for each individual with a Polar S810i instrument and with an ECG analyzed with a biological signal conditioner. The HRV indices (rMSSD, pNN50, LFnu, HFnu, and LF/HF) were calculated after signal processing and analysis. The unpaired Student t-test and intraclass correlation coefficient were used for data analysis. No statistically significant differences were observed when comparing the values analyzed by means of the two devices for HRV at rest and during exercise. The intraclass correlation coefficient demonstrated satisfactory correlation between the values obtained by the devices at rest (pNN50 = 0.994; rMSSD = 0.995; LFnu = 0.978; HFnu = 0.978; LF/HF = 0.982) and during exercise (pNN50 = 0.869; rMSSD = 0.929; LFnu = 0.973; HFnu = 0.973; LF/HF = 0.942). The calculation of HRV values by means of temporal series obtained from the Polar S810i instrument appears to be as reliable as those obtained by processing the ECG signal captured with a signal conditioner.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Autonomic control of heart rate variability and the central location of vagal preganglionic neurones (VPN) were examined in the rattlesnake ( Crotalus durissus terrificus), in order to determine whether respiratory sinus arrhythmia (RSA) occurred in a similar manner to that described for mammals. Resting ECG signals were recorded in undisturbed snakes using miniature datalogging devices, and the presence of oscillations in heart rate (f(H)) was assessed by power spectral analysis (PSA). This mathematical technique provides a graphical output that enables the estimation of cardiac autonomic control by measuring periodic changes in the heart beat interval. At fH above 19 min(-1) spectra were mainly characterised by low frequency components, reflecting mainly adrenergic tonus on the heart. By contrast, at f(H) below 19 min(-1) spectra typically contained high frequency components, demonstrated to be cholinergic in origin. Snakes with a f(H) > 19 min(-1) may therefore have insufficient cholinergic tonus and/or too high an adrenergic tonus acting upon the heart for respiratory sinus arrhythmia ( RSA) to develop. A parallel study monitored f(Hd) simultaneously with the intraperitoneal pressures associated with lung inflation. Snakes with a fH < 19 min(-1) exhibited a high frequency (HF) peak in the power spectrum, which correlated with ventilation rate (f(V)). Adrenergic blockade by propranolol infusion increased the variability of the ventilation cycle, and the oscillatory component of the f(H) spectrum broadened accordingly. Infusion of atropine to effect cholinergic blockade abolished this HF component, confirming a role for vagal control of the heart in matching f(H) and f(V) in the rattlesnake. A neuroanatomical study of the brainstem revealed two locations for vagal preganglionic neurones (VPN). This is consistent with the suggestion that generation of ventilatory components in the heart rate variability (HRV) signal are dependent on spatially distinct loci for cardiac VPN. Therefore, this study has demonstrated the presence of RSA in the HRV signal and a dual location for VPN in the rattlesnake. We suggest there to be a causal relationship between these two observations.