999 resultados para Lotka-Volterra system
Resumo:
Ebben a tanulmányban ismertetjük a Nöther-tétel lényegi vonatkozásait, és kitérünk a Lie-szimmetriák értelmezésére abból a célból, hogy közgazdasági folyamatokra is alkalmazzuk a Lagrange-formalizmuson nyugvó elméletet. A Lie-szimmetriák dinamikai rendszerekre történő feltárása és viselkedésük jellemzése a legújabb kutatások eredményei e területen. Például Sen és Tabor (1990), Edward Lorenz (1963), a komplex kaotikus dinamika vizsgálatában jelent®s szerepet betöltő 3D modelljét, Baumann és Freyberger (1992) a két-dimenziós Lotka-Volterra dinamikai rendszert, és végül Almeida és Moreira (1992) a három-hullám interakciós problémáját vizsgálták a megfelelő Lie-szimmetriák segítségével. Mi most empirikus elemzésre egy közgazdasági dinamikai rendszert választottunk, nevezetesen Goodwin (1967) ciklusmodelljét. Ennek vizsgálatát tűztük ki célul a leírandó rendszer Lie-szimmetriáinak meghatározásán keresztül. / === / The dynamic behavior of a physical system can be frequently described very concisely by the least action principle. In the centre of its mathematical presentation is a specic function of coordinates and velocities, i.e., the Lagrangian. If the integral of the Lagrangian is stationary, then the system is moving along an extremal path through the phase space, and vice versa. It can be seen, that each Lie symmetry of a Lagrangian in general corresponds to a conserved quantity, and the conservation principle is explained by a variational symmetry related to a dynamic or geometrical symmetry. Briey, that is the meaning of Noether's theorem. This paper scrutinizes the substantial characteristics of Noether's theorem, interprets the Lie symmetries by PDE system and calculates the generators (symmetry vectors) on R. H. Goodwin's cyclical economic growth model. At first it will be shown that the Goodwin model also has a Lagrangian structure, therefore Noether's theorem can also be applied here. Then it is proved that the cyclical moving in his model derives from its Lie symmetries, i.e., its dynamic symmetry. All these proofs are based on the investigations of the less complicated Lotka Volterra model and those are extended to Goodwin model, since both models are one-to-one maps of each other. The main achievement of this paper is the following: Noether's theorem is also playing a crucial role in the mechanics of Goodwin model. It also means, that its cyclical moving is optimal. Generalizing this result, we can assert, that all dynamic systems' solutions described by first order nonlinear ODE system are optimal by the least action principle, if they have a Lagrangian.
Resumo:
We study a stochastic lattice model describing the dynamics of coexistence of two interacting biological species. The model comprehends the local processes of birth, death, and diffusion of individuals of each species and is grounded on interaction of the predator-prey type. The species coexistence can be of two types: With self-sustained coupled time oscillations of population densities and without oscillations. We perform numerical simulations of the model on a square lattice and analyze the temporal behavior of each species by computing the time correlation functions as well as the spectral densities. This analysis provides an appropriate characterization of the different types of coexistence. It is also used to examine linked population cycles in nature and in experiment.
Resumo:
It is shown that Lotka-Volterra interaction terms are not appropriate to describe vertical cultural transmission. Appropriate interaction terms are derived and used to compute the effect of vertical cultural transmission on demic front propagation. They are also applied to a specific example, the Neolithic transition in Europe. In this example, it is found that the effect of vertical cultural transmission can be important (about 30%). On the other hand, simple models based on differential equations can lead to large errors (above 50%). Further physical, biophysical, and cross-disciplinary applications are outlined
Resumo:
Pós-graduação em Física - IFT
Resumo:
La tesi affronta il problema della risoluzione numerica di equazioni differenziali ordinarie, in particolare di problemi ai valori iniziali. Illustra i principali metodi numerici e li confronta, implementando il codice su MATLAB. Vengono risolti modelli fisici, biologici e demografici, come l'oscillatore di Lorenz e le equazioni di Lotka-Volterra.
Resumo:
In questa tesi vengono studiati gli effetti della non-normalità di un operatore all'interno di sistemi dinamici regolati da sistemi di equazioni differenziali ordinarie. Viene studiata la stabilità delle soluzioni, in particolare si approfondiscono fenomeni quali le crescite transitorie. In seguito vengono forniti strumenti grafici come gli Pseudospettri capaci di scoprire e quantificare tali "anomalie". I concetti studiati vengono poi applicati alla teoria dell'ecologia delle popolazioni utilizzando una generalizzazione delle equazioni di Lotka-Volterra. Modelli e matrici vengono implementate in Matlab mentre i risultati grafici sono ottenuti con il Toolbox Eigtool.
Resumo:
Las redes mutualistas son una clase de ecosistemas de gran interés en las que todas las interacciones entre especies son beneficiosas. Pueden modelarse como redes bipartitas con un núcleo de especies muy conectadas, una propiedad llamada anidamiento. Son muy resistentes y estables. La descripción matemática de las redes mutualistas está cimentada en modelos clásicos de población como los de Verhulst y Lotka-Volterra. En este trabajo proponemos una modificación de la formulación tradicional del mutualismo de May, incluyendo un factor de limitación del crecimiento que se basa en la conocida idea de la ecuación logística. Hemos construido una herramienta de simulación (SIGMUND) que permite experimentar con el modelo de forma simple y sencilla. Los resultados pueden ayudar a avanzar la investigación sobre el mutualismo, un campo activo de la ecología y la ciencia de redes.
Resumo:
Las redes mutualistas son una clase de ecosistemas de gran interés en las que todas las interacciones entre especies son beneficiosas. Pueden modelarse como redes bipartitas con un núcleo de especies muy conectadas, una propiedad llamada anidamiento. Son muy resistentes y estables. La descripción matemática de las redes mutualistas está cimentada en modelos clásicos de población como los de Verhulst y Lotka-Volterra. En este trabajo proponemos una modificación de la formulación tradicional del mutualismo de May, incluyendo un factor de limitación del crecimiento que se basa en la conocida idea de la ecuación logística. Hemos construido una herramienta de simulación (SIGMUND) que permite experimentar con el modelo de forma simple y sencilla. Los resultados pueden ayudar a avanzar la investigación sobre el mutualismo, un campo activo de la ecología y la ciencia de redes.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The basic concepts of digital signal processing are taught to the students in engineering and science. The focus of the course is on linear, time invariant systems. The question as to what happens when the system is governed by a quadratic or cubic equation remains unanswered in the vast majority of literature on signal processing. Light has been shed on this problem when John V Mathews and Giovanni L Sicuranza published the book Polynomial Signal Processing. This book opened up an unseen vista of polynomial systems for signal and image processing. The book presented the theory and implementations of both adaptive and non-adaptive FIR and IIR quadratic systems which offer improved performance than conventional linear systems. The theory of quadratic systems presents a pristine and virgin area of research that offers computationally intensive work. Once the area of research is selected, the next issue is the choice of the software tool to carry out the work. Conventional languages like C and C++ are easily eliminated as they are not interpreted and lack good quality plotting libraries. MATLAB is proved to be very slow and so do SCILAB and Octave. The search for a language for scientific computing that was as fast as C, but with a good quality plotting library, ended up in Python, a distant relative of LISP. It proved to be ideal for scientific computing. An account of the use of Python, its scientific computing package scipy and the plotting library pylab is given in the appendix Initially, work is focused on designing predictors that exploit the polynomial nonlinearities inherent in speech generation mechanisms. Soon, the work got diverted into medical image processing which offered more potential to exploit by the use of quadratic methods. The major focus in this area is on quadratic edge detection methods for retinal images and fingerprints as well as de-noising raw MRI signals
Resumo:
Programa de simulación sobre MS-DOS para Secundaria en Ciencias Naturales y Biología, especialmente COU y últimos cursos de Formación Profesional. Reproduce las relaciones entre depredadores y presas en un ecosistema según el modelo de los autores Lotka y Volterra. Introduce en los entornos de evaluación de ecosistemas y equilibrio de éstos. Incorpora un manual con instrucciones de uso, materiales para el alumno y un esbozo de las sesiones previas al uso del programa.
Resumo:
Structural damage identification is basically a nonlinear phenomenon; however, nonlinear procedures are not used currently in practical applications due to the complexity and difficulty for implementation of such techniques. Therefore, the development of techniques that consider the nonlinear behavior of structures for damage detection is a research of major importance since nonlinear dynamical effects can be erroneously treated as damage in the structure by classical metrics. This paper proposes the discrete-time Volterra series for modeling the nonlinear convolution between the input and output signals in a benchmark nonlinear system. The prediction error of the model in an unknown structural condition is compared with the values of the reference structure in healthy condition for evaluating the method of damage detection. Since the Volterra series separate the response of the system in linear and nonlinear contributions, these indexes are used to show the importance of considering the nonlinear behavior of the structure. The paper concludes pointing out the main advantages and drawbacks of this damage detection methodology. © (2013) Trans Tech Publications.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)