960 resultados para Loss of heterozygosity (LOH)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

DNA mismatch repair is an important mechanism involved in maintaining the fidelity of genomic DNA. Defective DNA mismatch repair is implicated in a variety of gastrointestinal and other turners; however, its role in hepatocellular carcinoma (HCC) has not been assessed. Formalin-fixed, paraffin-embedded archival pathology tissues from 46 primary liver tumors were studied by microdissection and microsatellite analysis of extracted DNA to assess the degree of microsatellite instability, a marker of defective mismatch repair, and to determine the extent and timing of allelic loss of two DNA mismatch repair genes, human Mut S homologue-2 (hMSH2) and human Mut L homologue-1 (hMLH1), and the tumor suppressor genes adenomatous polyposis coli gene (APC), p53, and DPC4. Microsatellite instability was detected in 16 of the tumors (34.8%). Loss of heterozygosity at microsatellites linked to the DNA mismatch repair genes, hMSH2 and/or hMLH1, was found in 9 cases (19.6%), usually in association with microsatellite instability. Importantly, the pattern of allelic loss was uniform in 8 of these 9 tumors, suggesting that clonal loss had occurred. Moreover, loss at these loci also occurred in nonmalignant tissue adjacent to 4 of these tumors, where it was associated with marked allelic heterogeneity. There was relatively infrequent loss of APC, p53, or DPC4 loci that appeared unrelated to loss of hMSH2 or hMLH1 gene loci. Loss of heterozygosity at hMSH2 and/or hMLH1 gene loci, and the associated microsatellite instability in premalignant hepatic tissues suggests a possible causal role in hepatic carcinogenesis in a subset of hepatomas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pheochromocytomas are tumors of the adrenal medulla originating in the chromaffin cells derived from the neural crest. Ten % of these tumors are associated with the familial cancer syndromes multiple endocrine neoplasia type 2, von Hippel-Lindau disease (VHL), and rarely, neurofibromatosis type 1, in which germ-line mutations have been identified in RET, VHL, and NF1, respectively. In both the sporadic and familial forms of pheochromocytoma, allelic loss at 1p, 3p, 17p, and 22q has been reported, yet the molecular pathogenesis of these tumors is largely unknown. Allelic loss at chromosome 1p has also been reported in other endocrine tumors, such as medullary thyroid cancer and tumors of the parathyroid gland, as well as in tumors of neural crest origin including neuroblastoma and malignant melanoma, In this study, we performed fine structure mapping of deletions at chromosome 1p in familial and sporadic pheochromocytomas to identify discrete regions likely housing tumor suppressor genes involved in the development of these tumors. Ten microsatellite markers spanning a region of similar to 70 cM (Ipter to 1p34.3) were used to screen 20 pheochromocytomas from 19 unrelated patients for loss of heterozygosity (LOH). LOH was detected at five or more loci in 8 of 13 (61%)sporadic samples and at five or more loci in four of five (80%) tumor samples from patients with multiple endocrine neoplasia type 2. No LOH at 1p was detected in pheochromocytomas from two VHL patients, Analysis of the combined sporadic and familial tumor data suggested three possible regions of common somatic loss, designated as PCI (D1S243 to D1S244), PC2 (D1S228 to D1S507), and PC3 (D1S507 toward the centromere). We propose that chromosome Ip may be the site of at least three putative tumor suppressor loci involved in the tumorigenesis of pheochromocytomas. At least one of these loci, PC2 spanning an interval of <3.8 cM, is Likely to have a broader role in the development of endocrine malignancies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Basal cell carcinomas (BCCs) are the most frequent human cancer that results from malignant transformation of basal cells in the epidermis. Gorlin syndrome is a rare inherited autosomal dominant disease that predisposes with multiple BCCs and other birth defects. Both sporadic and inherited BCCs are associated with mutations in the tumor suppressor gene PTCH1, but there is still uncertainty on the role of its homolog PTCH2. Objectives To search for mutations and genomic instability in sporadic and inherited BCCs. Methods DNA obtained from leukocytes and tumor cells was amplified by polymerase chain reaction regarding five exons of PTCH1 and PTCH2 and neighboring microsatellites. Exons were sequenced and compared with the GenBank database. Results Only D9S180, of six microsatellites, showed loss of heterozygosity in three BCCs (two sporadic and one inherited). One sporadic BCC presented the mutation g. 2885G>C in exon 17 of PTCH1, which predicts the substitution p.R962T in an external domain of the protein. In addition, the leukocytes and tumor cells of one patient with Gorlin syndrome showed the mutation g. 2839T>G in the same exon and gene, which predicts a p.E947stop and truncated protein. All control and tumor samples presented IVS9 + 217T in intron 9 of PTCH1. Conclusion Mutations found in the PTCH1 gene and neighboring repetitive sequences may have contributed to the development of the studied BCCs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pediatric follicular lymphoma is a rare disease that differs genetically and clinically from its adult counterpart. With the exception of pediatric follicular lymphoma with IRF4-translocation, the genetic events associated with these lymphomas have not yet been defined. We applied array-comparative genomic hybridization and molecular inversion probe assay analyses to formalin-fixed paraffin-embedded tissues from 18 patients aged 18 years and under with IRF4 translocation negative follicular lymphoma. All evaluable cases lacked t(14;18). Only 6 of 16 evaluable cases displayed chromosomal imbalances with gains or amplifications of 6pter-p24.3 (including IRF4) and deletion and copy number neutral-loss of heterozygosity in 1p36 (including TNFRSF14) being most frequent. Sequencing of TNFRSF14 located in the minimal region of loss in 1p36.32 showed nine mutations in 7 cases from our series. Two subsets of pediatric follicular lymphoma were delineated according to the presence of molecular alterations, one with genomic aberrations associated with higher grade and/or diffuse large B-cell lymphoma component and more widespread disease, and another one lacking genetic alterations associated with more limited disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Expression of human leucocyte antigen (HLA) Class I molecules is essential for the recognition of malignant melanoma (MM) cells by CD8(+) T lymphocytes. A complete or partial loss of HLA Class I molecules is a potent strategy for MM cells to escape from immunosurveillance. In 2 out of 55 melanoma cell cultures we identified a complete phenotypic loss of HLA allospecificities. Both patients have been treated unsuccessfully with HLA-A2 peptides. To identify the reasons underlying the loss of single HLA-A allospecificities, we searched for genomic alterations at the locus for HLA Class I alpha-chain on chromosome 6 in melanoma cell cultures established from 2 selected patients with MM in advanced stage. This deficiency was associated with alterations of HLA-A2 gene sequences as determined by polymerase chain reaction-sequence specific primers (PCR-SSP). Karyotyping revealed a chromosomal loss in Patient 1, whereas melanoma cell cultures established from Patient 2 displayed 2 copies of chromosome 6. Loss of heterozygosity (LOH) using markers located around position 6p21 was detected in both cases. By applying group-specific primer-mixes spanning the 5'-flanking region of the HLA-A2 gene locus the relevant region was amplified by PCR and subsequent sequencing allowed alignment with the known HLA Class I reference sequences. Functional assays using HLA-A2-restricted cytotoxic T-cell clones were performed in HLA-A2 deficient MM cultures and revealed a drastically reduced susceptibility to CTL lysis in HLA-A2 negative cells. We could document the occurrence of selective HLA-A2 deficiencies in cultured advanced-stage melanoma metastases and identify their molecular causes as genomic alterations within the HLA-A gene locus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Neurofibromatosis type 1 (NF1) is a pheochromocytoma-associated syndrome. Because of the low prevalence of pheochromocytoma in NF1, we ascertained subjects by pheochromocytoma that also had NF1 in the hope of describing the germline NF1 mutational spectra of NF1-related pheochromocytoma. MATERIALS AND METHODS: An international registry for NF1-pheochromocytomas was established. Mutation scanning was performed using denaturing HPLC for intragenic variation and quantitative PCR for large deletions. Loss-of-heterozygosity analysis using markers in and around NF1 was performed. RESULTS: There were 37 eligible subjects (ages 14-70 yr). Of 21 patients with corresponding tumor available, 67% showed somatic loss of the nonmutated allele at the NF1 locus vs. 0 of 12 sporadic tumors (P = 0.0002). Overall, 86% of the 37 patients had exonic or splice site mutations, 14% large deletions or duplications; 79% of the mutations are novel. The cysteine-serine rich domain (CSR) was affected in 35% but the RAS GTPase activating protein domain (RGD) in only 13%. There did not appear to be an association between any clinical features, particularly pheochromocytoma presentation and severity, and NF1 mutation genotype. CONCLUSIONS: The germline NF1 mutational spectra comprise intragenic mutations and deletions in individuals with pheochromocytoma and NF1. NF1 mutations tended to cluster in the CSR over the RAS-GAP domain, suggesting that CSR plays a more prominent role in individuals with NF1-pheochromocytoma than in NF1 individuals without this tumor. Loss-of-heterozygosity of NF1 markers in NF1-related pheochromocytoma was significantly more frequent than in sporadic pheochromocytoma, providing further molecular evidence that pheochromocytoma is a true component of NF1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Microarray genome analysis is realising its promise for improving detection of genetic abnormalities in individuals with mental retardation and congenital abnormality. Copy number variations (CNVs) are now readily detectable using a variety of platforms and a major challenge is the distinction of pathogenic from ubiquitous, benign polymorphic CNVs. The aim of this study was to investigate replacement of time consuming, locus specific testing for specific microdeletion and microduplication syndromes with microarray analysis, which theoretically should detect all known syndromes with CNV aetiologies as well as new ones. METHODS: Genome wide copy number analysis was performed on 117 patients using Affymetrix 250K microarrays. RESULTS: 434 CNVs (195 losses and 239 gains) were found, including 18 pathogenic CNVs and 9 identified as "potentially pathogenic". Almost all pathogenic CNVs were larger than 500 kb, significantly larger than the median size of all CNVs detected. Segmental regions of loss of heterozygosity larger than 5 Mb were found in 5 patients. CONCLUSIONS: Genome microarray analysis has improved diagnostic success in this group of patients. Several examples of recently discovered "new syndromes" were found suggesting they are more common than previously suspected and collectively are likely to be a major cause of mental retardation. The findings have several implications for clinical practice. The study revealed the potential to make genetic diagnoses that were not evident in the clinical presentation, with implications for pretest counselling and the consent process. The importance of contributing novel CNVs to high quality databases for genotype-phenotype analysis and review of guidelines for selection of individuals for microarray analysis is emphasised.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous studies of Min/+ (multiple intestinal neoplasia) mice on a sensitive genetic background, C57BL/6 (B6), showed that adenomas have lost heterozygosity for the germ-line ApcMin mutation in the Apc (adenomatous polyposis coli) gene. We now report that on a strongly resistant genetic background, AKR/J (AKR), Min-induced adenoma multiplicity is reduced by about two orders of magnitude compared with that observed on the B6 background. Somatic treatment with a strong mutagen increases tumor number in AKR Min/+ mice in an age-dependent manner, similar to results previously reported for B6 Min/+ mice. Immunohistochemical analyses indicate that Apc expression is suppressed in all intestinal tumors from both untreated and treated AKR Min/+ mice. However, the mechanism of Apc inactivation in AKR Min/+ mice often differs from that observed for B6 Min/+ mice. Although loss of heterozygosity is observed in some tumors, a significant percentage of tumors showed neither loss of heterozygosity nor Apc truncation mutations. These results extend our understanding of the effects of genetic background on Min-induced tumorigenesis in several ways. First, the AKR strain carries modifiers of Min in addition to Mom1. This combination of AKR modifiers can almost completely suppress spontaneous intestinal tumorigenesis associated with the Min mutation. Second, even on such a highly resistant genetic background, tumor formation continues to involve an absence of Apc function. The means by which Apc function is inactivated is affected by genetic background. Possible scenarios are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The gene encoding human plakoglobin was mapped to chromosome 17q12-q22. An intragenic restriction fragment length polymorphism was used to localize the plakoglobin gene distal to locus KRT10 and proximal to the marker D17S858. The plakoglobin gene colocalizes with the polymorphic 17q21 marker UM8 on the same cosmid insert. This subregion of chromosome 17 is known to be particularly subjected to genetic alterations in sporadic breast and ovarian tumors. We show loss of heterozygosity of the plakoglobin gene in breast and ovarian tumors. We have identified a low-frequency polymorphism in the plakoglobin coding sequence which results in an arginine to histidine substitution at amino acid position 142 of the protein, as well as a silent mutation at nucleotide position 332 of the coding sequence. This polymorphism allowed us to demonstrate an allelic association of plakoglobin with predisposition to familial breast and ovarian cancers. Our results, together with the present knowledge about the biological function of plakoglobin, suggest that plakoglobin might represent a putative tumor suppressor gene for breast and ovarian cancers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have studied loss of heterozygosity at the BRCA1 and BRCA2 loci in 992 normal cell clones derived from topographically defined areas of normal tissue in four samples from BRCA1/BRCA2 mutation carriers. The frequency of loss of heterozygosity in the clones was low ( 1.01%), but it was found in all four samples, whether or not a tumour was present. Topographical mapping revealed that the genetic changes were clustered in some breast samples. Our study confirms the previous finding that a field of genetic instability can exist around a tumour, suggesting that sufficient tissue must be removed at surgery to avoid local recurrence. We also demonstrate that such a field of genetic change can exist in morphologically normal tissue before a tumour develops and, for the first time, we demonstrate that the field is of a size greater than one terminal duct-lobular unit. The genetic changes are not identical, however, which suggests that genetic instability in these regions may play an early role in tumour development. We also confirm and extend our original observation of loss of the wild-type BRCA1 allele in some clones, and loss of the mutant allele in others, demonstrating that loss of either allele is a stochastic event.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. Loss of heterozygosity (LOH) correlates with inactivated tumor suppressor genes. LOH at chromosome arm 22q has been found in a variety of human neoplasms, suggesting that this region contains a tumor suppressor gene(s) other than NF2 important to tumorigenesis. The aim of this study was to evaluate the presence of LOH on chromosome 22q11.2-13 and determine whether there was a relationship between loss in this genomic region and tumor histologic parameters, anatomic site, and survival in patients with squamous cell carcinoma of the head and neck (HNSCC).Methods. Fifty matched blood and HNSCC tumor samples taken at the time of surgical treatment were evaluated for LOH by use of four microsatellite markers mapping to 22q11.2-q13. Clinical information was available for all patients. The frequency and distribution of LOH was correlated with clinical (age, sex, use of tobacco and alcohol, site of primary tumor, clinical stage, adjuvant therapy and overall survival) and histologic parameters (histopathologic stage, tumor differentiation).Results. LOH at 22q was found in 19 of 50 (38%) informative tumors. The respective incidence of allelic loss for the patients was as follows: 28% at D22S421, 10% at D22S277, 8% at D22S44S, and 4% at D22S280. No statistical differences were apparent with a mean follow-up of 30 months. Laryngeal tumors showed a higher incidence of LOH compared with oral tumors.Conclusions. These results suggest that the D22S277 locus may be closely linked to a tumor suppressor gene (TSG) and involved in upper aerodigestive tract carcinogenesis. In particular, laryngeal tumors may harbor another putative TSG on 22q11.2-q12.3 that may play a role in aggressive stage III/IV disease. (C) 2000 John Wiley & Sons, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: WHO grade II gliomas are often approached by radiation therapy (RT). However, little is known about tumor response and its potential impact on long-term survival. PATIENTS AND METHODS: Patients subjected to RT were selected from the own database of WHO grade II gliomas diagnosed between 1991 and 2000. The volumetric tumor response after RT was assessed based on magnetic resonance imaging and graded according to standard criteria as complete, partial (PR, >or= 50%), or minor (MR, 25% to <50%). RESULTS: There were 24 astrocytomas and three oligoastrocytomas. 21 patients (78%) were dead at follow-up (mean survival 74 months). None of the patients had chemotherapy. Objective response occurred in 14 patients (52%, five PR and nine MR) but was not associated with overall survival. The vast majority of the tumors had no loss of heterozygosity (LOH) 1p and/or 19q (86%). CONCLUSION: Approximately 50% of patients with astrocytic WHO grade II gliomas respond to RT despite the absence of LOH for 1p/19q. The potential predictive factors for response and the impact of response on overall survival remain unclear.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mutations in the APC (adenomatous polyposis coli) gene appear to be responsible for not only familial adenomatous polyposis but also many sporadic cases of gastrointestinal cancers. Using homologous recombination in mouse embryonic stem cells, we constructed mice that contained a mutant gene encoding a product truncated at a 716 (Apc delta 716). Mendelian transmission of the gene caused most homozygous mice to die in utero before day 8 of gestation. The heterozygotes developed multiple polyps throughout the intestinal tract, mostly in the small intestine. The earliest polyps arose multifocally during the third week after birth, and new polyps continued to appear thereafter. Surprisingly, every nascent polyp consisted of a microadenoma covered with a layer of the normal villous epithelium. These microadenomas originated from single crypts by forming abnormal outpockets into the inner (lacteal) side of the neighboring villi. We carefully dissected such microadenomas from nascent polyps by peeling off the normal epithelium and determined their genotype by PCR: all microadenomas had already lost the wild-type Apc allele, whereas the mutant allele remained unchanged. These results indicate that loss of heterozygosity followed by formation of intravillous microadenomas is responsible for polyposis in Apc delta 716 intestinal mucosa. It is therefore unlikely that the truncated product interacts directly with the wild-type protein and causes the microadenomas by a dominant negative mechanism.