993 resultados para Logic synthesis
Resumo:
"Supported in part by ... Grant no. NSF GJ-503."
Resumo:
Vita.
Resumo:
With service interaction modelling, it is customary to distinguish between two types of models: choreographies and orchestrations. A choreography describes interactions within a collection of services from a global perspective, where no service plays a privileged role. Instead, services interact in a peer-to-peer manner. In contrast, an orchestration describes the interactions between one particular service, the orchestrator, and a number of partner services. The main proposition of this work is an approach to bridge these two modelling viewpoints by synthesising orchestrators from choreographies. To start with, choreographies are defined using a simple behaviour description language based on communicating finite state machines. From such a model, orchestrators are initially synthesised in the form of state machines. It turns out that state machines are not suitable for orchestration modelling, because orchestrators generally need to engage in concurrent interactions. To address this issue, a technique is proposed to transform state machines into process models in the Business Process Modelling Notation (BPMN). Orchestrations represented in BPMN can then be augmented with additional business logic to achieve value-adding mediation. In addition, techniques exist for refining BPMN models into executable process definitions. The transformation from state machines to BPMN relies on Petri nets as an intermediary representation and leverages techniques from theory of regions to identify concurrency in the initial Petri net. Once concurrency has been identified, the resulting Petri net is transformed into a BPMN model. The original contributions of this work are: an algorithm to synthesise orchestrators from choreographies and a rules-based transformation from Petri nets into BPMN.
Resumo:
Modern computer graphics systems are able to construct renderings of such high quality that viewers are deceived into regarding the images as coming from a photographic source. Large amounts of computing resources are expended in this rendering process, using complex mathematical models of lighting and shading. However, psychophysical experiments have revealed that viewers only regard certain informative regions within a presented image. Furthermore, it has been shown that these visually important regions contain low-level visual feature differences that attract the attention of the viewer. This thesis will present a new approach to image synthesis that exploits these experimental findings by modulating the spatial quality of image regions by their visual importance. Efficiency gains are therefore reaped, without sacrificing much of the perceived quality of the image. Two tasks must be undertaken to achieve this goal. Firstly, the design of an appropriate region-based model of visual importance, and secondly, the modification of progressive rendering techniques to effect an importance-based rendering approach. A rule-based fuzzy logic model is presented that computes, using spatial feature differences, the relative visual importance of regions in an image. This model improves upon previous work by incorporating threshold effects induced by global feature difference distributions and by using texture concentration measures. A modified approach to progressive ray-tracing is also presented. This new approach uses the visual importance model to guide the progressive refinement of an image. In addition, this concept of visual importance has been incorporated into supersampling, texture mapping and computer animation techniques. Experimental results are presented, illustrating the efficiency gains reaped from using this method of progressive rendering. This visual importance-based rendering approach is expected to have applications in the entertainment industry, where image fidelity may be sacrificed for efficiency purposes, as long as the overall visual impression of the scene is maintained. Different aspects of the approach should find many other applications in image compression, image retrieval, progressive data transmission and active robotic vision.
Resumo:
A configurable process model describes a family of similar process models in a given domain. Such a model can be configured to obtain a specific process model that is subsequently used to handle individual cases, for instance, to process customer orders. Process configuration is notoriously difficult as there may be all kinds of interdependencies between configuration decisions.} In fact, an incorrect configuration may lead to behavioral issues such as deadlocks and livelocks. To address this problem, we present a novel verification approach inspired by the ``operating guidelines'' used for partner synthesis. We view the configuration process as an external service, and compute a characterization of all such services which meet particular requirements using the notion of configuration guideline. As a result, we can characterize all feasible configurations (i.\,e., configurations without behavioral problems) at design time, instead of repeatedly checking each individual configuration while configuring a process model.
Resumo:
Variants of the same process can be encountered within one organization or across different organizations. For example, different municipalities, courts, and rental agencies all need to support highly similar processes. In fact, procurement and sales processes can be found in almost any organization. However, despite these similarities, there is also the need to allow for local variations in a controlled manner. Therefore, many academics and practitioners have advocated the use of configurable process models (sometimes referred to as reference models). A configurable process model describes a family of similar process models in a given domain. Such a model can be configured to obtain a specific process model that is subsequently used to handle individual cases, for instance, to process customer orders. Process configuration is notoriously difficult as there may be all kinds of interdependencies between configuration decisions. In fact, an incorrect configuration may lead to behavioral issues such as deadlocks and livelocks. To address this problem, we present a novel verification approach inspired by the “operating guidelines” used for partner synthesis. We view the configuration process as an external service, and compute a characterization of all such services which meet particular requirements via the notion of configuration guideline. As a result, we can characterize all feasible configurations (i. e., configurations without behavioral problems) at design time, instead of repeatedly checking each individual configuration while configuring a process model.
Resumo:
Bayesian networks (BNs) are tools for representing expert knowledge or evidence. They are especially useful for synthesising evidence or belief concerning a complex intervention, assessing the sensitivity of outcomes to different situations or contextual frameworks and framing decision problems that involve alternative types of intervention. Bayesian networks are useful extensions to logic maps when initiating a review or to facilitate synthesis and bridge the gap between evidence acquisition and decision-making. Formal elicitation techniques allow development of BNs on the basis of expert opinion. Such applications are useful alternatives to ‘empty’ reviews, which identify knowledge gaps but fail to support decision-making. Where review evidence exists, it can inform the development of a BN. We illustrate the construction of a BN using a motivating example that demonstrates how BNs can ensure coherence, transparently structure the problem addressed by a complex intervention and assess sensitivity to context, all of which are critical components of robust reviews of complex interventions. We suggest that BNs should be utilised to routinely synthesise reviews of complex interventions or empty reviews where decisions must be made despite poor evidence.
Resumo:
An algebraic generalization of the well-known binary q-function array to a multivalued q-function array is presented. It is possible to associate tree-structure realizations for binary q-functions and multivalued q-functions. Synthesis of multivalued functions using this array is very simple
Resumo:
A framework based on the notion of "conflict-tolerance" was proposed in as a compositional methodology for developing and reasoning about systems that comprise multiple independent controllers. A central notion in this framework is that of a "conflict-tolerant" specification for a controller. In this work we propose a way of defining conflict-tolerant real-time specifications in Metric Interval Temporal Logic (MITL). We call our logic CT-MITL for Conflict-Tolerant MITL. We then give a clock optimal "delay-then-extend" construction for building a timed transition system for monitoring past-MITL formulas. We show how this monitoring transition system can be used to solve the associated verification and synthesis problems for CT-MITL.
Resumo:
This thesis is motivated by safety-critical applications involving autonomous air, ground, and space vehicles carrying out complex tasks in uncertain and adversarial environments. We use temporal logic as a language to formally specify complex tasks and system properties. Temporal logic specifications generalize the classical notions of stability and reachability that are studied in the control and hybrid systems communities. Given a system model and a formal task specification, the goal is to automatically synthesize a control policy for the system that ensures that the system satisfies the specification. This thesis presents novel control policy synthesis algorithms for optimal and robust control of dynamical systems with temporal logic specifications. Furthermore, it introduces algorithms that are efficient and extend to high-dimensional dynamical systems.
The first contribution of this thesis is the generalization of a classical linear temporal logic (LTL) control synthesis approach to optimal and robust control. We show how we can extend automata-based synthesis techniques for discrete abstractions of dynamical systems to create optimal and robust controllers that are guaranteed to satisfy an LTL specification. Such optimal and robust controllers can be computed at little extra computational cost compared to computing a feasible controller.
The second contribution of this thesis addresses the scalability of control synthesis with LTL specifications. A major limitation of the standard automaton-based approach for control with LTL specifications is that the automaton might be doubly-exponential in the size of the LTL specification. We introduce a fragment of LTL for which one can compute feasible control policies in time polynomial in the size of the system and specification. Additionally, we show how to compute optimal control policies for a variety of cost functions, and identify interesting cases when this can be done in polynomial time. These techniques are particularly relevant for online control, as one can guarantee that a feasible solution can be found quickly, and then iteratively improve on the quality as time permits.
The final contribution of this thesis is a set of algorithms for computing feasible trajectories for high-dimensional, nonlinear systems with LTL specifications. These algorithms avoid a potentially computationally-expensive process of computing a discrete abstraction, and instead compute directly on the system's continuous state space. The first method uses an automaton representing the specification to directly encode a series of constrained-reachability subproblems, which can be solved in a modular fashion by using standard techniques. The second method encodes an LTL formula as mixed-integer linear programming constraints on the dynamical system. We demonstrate these approaches with numerical experiments on temporal logic motion planning problems with high-dimensional (10+ states) continuous systems.
Resumo:
Modern robots are increasingly expected to function in uncertain and dynamically challenging environments, often in proximity with humans. In addition, wide scale adoption of robots requires on-the-fly adaptability of software for diverse application. These requirements strongly suggest the need to adopt formal representations of high level goals and safety specifications, especially as temporal logic formulas. This approach allows for the use of formal verification techniques for controller synthesis that can give guarantees for safety and performance. Robots operating in unstructured environments also face limited sensing capability. Correctly inferring a robot's progress toward high level goal can be challenging.
This thesis develops new algorithms for synthesizing discrete controllers in partially known environments under specifications represented as linear temporal logic (LTL) formulas. It is inspired by recent developments in finite abstraction techniques for hybrid systems and motion planning problems. The robot and its environment is assumed to have a finite abstraction as a Partially Observable Markov Decision Process (POMDP), which is a powerful model class capable of representing a wide variety of problems. However, synthesizing controllers that satisfy LTL goals over POMDPs is a challenging problem which has received only limited attention.
This thesis proposes tractable, approximate algorithms for the control synthesis problem using Finite State Controllers (FSCs). The use of FSCs to control finite POMDPs allows for the closed system to be analyzed as finite global Markov chain. The thesis explicitly shows how transient and steady state behavior of the global Markov chains can be related to two different criteria with respect to satisfaction of LTL formulas. First, the maximization of the probability of LTL satisfaction is related to an optimization problem over a parametrization of the FSC. Analytic computation of gradients are derived which allows the use of first order optimization techniques.
The second criterion encourages rapid and frequent visits to a restricted set of states over infinite executions. It is formulated as a constrained optimization problem with a discounted long term reward objective by the novel utilization of a fundamental equation for Markov chains - the Poisson equation. A new constrained policy iteration technique is proposed to solve the resulting dynamic program, which also provides a way to escape local maxima.
The algorithms proposed in the thesis are applied to the task planning and execution challenges faced during the DARPA Autonomous Robotic Manipulation - Software challenge.
Resumo:
The centralized paradigm of a single controller and a single plant upon which modern control theory is built is no longer applicable to modern cyber-physical systems of interest, such as the power-grid, software defined networks or automated highways systems, as these are all large-scale and spatially distributed. Both the scale and the distributed nature of these systems has motivated the decentralization of control schemes into local sub-controllers that measure, exchange and act on locally available subsets of the globally available system information. This decentralization of control logic leads to different decision makers acting on asymmetric information sets, introduces the need for coordination between them, and perhaps not surprisingly makes the resulting optimal control problem much harder to solve. In fact, shortly after such questions were posed, it was realized that seemingly simple decentralized optimal control problems are computationally intractable to solve, with the Wistenhausen counterexample being a famous instance of this phenomenon. Spurred on by this perhaps discouraging result, a concerted 40 year effort to identify tractable classes of distributed optimal control problems culminated in the notion of quadratic invariance, which loosely states that if sub-controllers can exchange information with each other at least as quickly as the effect of their control actions propagates through the plant, then the resulting distributed optimal control problem admits a convex formulation.
The identification of quadratic invariance as an appropriate means of "convexifying" distributed optimal control problems led to a renewed enthusiasm in the controller synthesis community, resulting in a rich set of results over the past decade. The contributions of this thesis can be seen as being a part of this broader family of results, with a particular focus on closing the gap between theory and practice by relaxing or removing assumptions made in the traditional distributed optimal control framework. Our contributions are to the foundational theory of distributed optimal control, and fall under three broad categories, namely controller synthesis, architecture design and system identification.
We begin by providing two novel controller synthesis algorithms. The first is a solution to the distributed H-infinity optimal control problem subject to delay constraints, and provides the only known exact characterization of delay-constrained distributed controllers satisfying an H-infinity norm bound. The second is an explicit dynamic programming solution to a two player LQR state-feedback problem with varying delays. Accommodating varying delays represents an important first step in combining distributed optimal control theory with the area of Networked Control Systems that considers lossy channels in the feedback loop. Our next set of results are concerned with controller architecture design. When designing controllers for large-scale systems, the architectural aspects of the controller such as the placement of actuators, sensors, and the communication links between them can no longer be taken as given -- indeed the task of designing this architecture is now as important as the design of the control laws themselves. To address this task, we formulate the Regularization for Design (RFD) framework, which is a unifying computationally tractable approach, based on the model matching framework and atomic norm regularization, for the simultaneous co-design of a structured optimal controller and the architecture needed to implement it. Our final result is a contribution to distributed system identification. Traditional system identification techniques such as subspace identification are not computationally scalable, and destroy rather than leverage any a priori information about the system's interconnection structure. We argue that in the context of system identification, an essential building block of any scalable algorithm is the ability to estimate local dynamics within a large interconnected system. To that end we propose a promising heuristic for identifying the dynamics of a subsystem that is still connected to a large system. We exploit the fact that the transfer function of the local dynamics is low-order, but full-rank, while the transfer function of the global dynamics is high-order, but low-rank, to formulate this separation task as a nuclear norm minimization problem. Finally, we conclude with a brief discussion of future research directions, with a particular emphasis on how to incorporate the results of this thesis, and those of optimal control theory in general, into a broader theory of dynamics, control and optimization in layered architectures.
Resumo:
The synthesis and photophysical characterization of a novel molecular logic gate 4, operating in water, is demonstrated based on the competition between. fluorescence and photoinduced electron transfer (PET). It is constructed according to a 'fluorophore-spacer-receptor(1)-spacer-receptor(2)' format where anthracene is the. fluorophore, receptor(1) is a tertiary amine and receptor(2) is a phenyliminodiacetate ligand. Using only protons and zinc cations as the chemical inputs and. fluorescence as the output, 4 is demonstrated to be both a two-input AND and INH logic gate. When 4 is examined in context to the YES logic gates 1 and 2, and the two-input AND logic gate 3 and three-input AND logic gate 5, each with one or more of the following receptors including a tertiary amine, phenyliminodiacetate or benzo-15-crown-5 ether, logic gate 4 is the missing link in the homologous series. Collectively, the molecular logic gates 1-5 corroborate the PET 'fluorophore-spacer-receptor' model using chemical inputs and a light-signal output and provide insight into controlling the. fluorescence quantum yield of future PET-based molecular logic gates.
Resumo:
Background Rapid Response Systems (RRS) consist of four interrelated and interdependent components; an event detection and trigger mechanism, a response strategy, a governance structure and process improvement system. These multiple components of the RRS pose problems in evaluation as the intervention is complex and cannot be evaluated using a traditional systematic review. Complex interventions in healthcare aimed at changing service delivery and related behaviour of health professionals require a different approach to summarising the evidence. Realist synthesis is such an approach to reviewing research evidence on complex interventions to provide an explanatory analysis of how and why an intervention works or doesn’t work in practice. The core principle is to make explicit the underlying assumptions about how an intervention is suppose to work (ie programme theory) and then use this theory to guide evaluation. Methods A realist synthesis process was used to explain those factors that enable or constrain the success of RRS programmes. Results The findings from the review include the articulation of the RRS programme theories, evaluation of whether these theories are supported or refuted by the research evidence and an evaluation of evidence to explain the underlying reasons why RRS works or doesn’t work in practice. Rival conjectured RRS programme theories were identified to explain the constraining factors regarding implementation of RRS in practice. These programme theories are presented using a logic model to highlight all the components which impact or influence the delivery of RRS programmes in the practice setting. The evidence from the realist synthesis provided the foundation for the development of hypothesis to test and refine the theories in the subsequent stages of the Realist Evaluation PhD study [1]. This information will be useful in providing evidence and direction for strategic and service planning of acute care to improve patient safety in hospital. References: McGaughey J, Blackwood B, O’Halloran P, Trinder T. J. & Porter S. (2010) Realistic Evaluation of Early Warning Systems and the Acute Life-threatening Events – Recognition and Treatment training course for early recognition and management of deteriorating ward-based patients: research protocol. Journal of Advanced Nursing 66 (4), 923-932.