998 resultados para Locomotor performance
Resumo:
O estudo da instabilidade do desenvolvimento (ID) em organismos pode ser útil para identificar os primeiros sinais de estresse ambiental. Alterações na ID também influenciam a aptidão dos organismos. A variação entre a simetria dos lados esquerdo e direito, manifestada como assimetria flutuante (AF), é um indicador da ID. Ao quantificarmos a literatura científica referente aos estudos de assimetria em répteis identificamos as seguintes tendências: perturbações ambientais aumentam a AF nas populações, fêmeas tendem a escolher machos com características sexuais simétricas, a instabilidade térmica durante o desenvolvimento do ovo pode produzir indivíduos com maior assimetria, a ocorrência de lesões é mais frequente em indivíduos assimétricos para um determinado lado e há uma correlação negativa entre a assimetria e o desempenho locomotor. Considerando os nossos critério de busca, não encontramos estudos sobre assimetria em répteis na América do Sul. Neste estudo, utilizamos diferentes caracteres merísticos e métricos bilaterais para identificar a AF em diferentes populações de cinco espécies de lagartos do gênero Cnemidophorus (C. abaetensis, C. lacertoides, C. littoralis, C. nativo, C. ocellifer) em 15 áreas de restinga ao longo da costa leste do Brasil. A AF foi maior em populações de Cnemidophorus com maior densidade, menor em populações de restingas com maior degradação ambiental e a sua relação com a concentração de mercúrio variou dependendo da espécie. Provavelmente os agentes estressores ambientais avaliados atuam com intensidades diferentes. O nível de degradação ambiental e a concentração de mercúrio causariam a deterioração precoce dos indivíduos com maiores valores de AF. Isso resulta em uma relação inversa entre esses estresses e a AF das populações. Indivíduos com vestígios de autotomia caudal tiveram maiores valores de AF, o que pode ser um indicativo de que indivíduos com menor aptidão efetuam mais autotomia caudal do que aqueles com maior aptidão. Lagartos com evidências de autotomia também tiveram maior tamanho corpóreo, provavelmente devido a estes estarem expostos a mais tempo aos riscos de predação. Não encontramos diferenciação entre as espécies na frequência de autotomia caudal sendo esta talvez melhor explicada por fatores ambientais como a intensidade de predação. Os índices de AF para caracteres múltiplos se mostraram mais eficientes do que a AF de caracteres individuais nas comparações entre indivíduos vivendo em populações com diferentes níveis de estresse e entre indivíduos com e sem autotomia caudal
Resumo:
Although seasonal metabolic variation in ectothermic tetrapods has been investigated primarily in the context of species showing some level of metabolic depression during winter, but several species of anurans maintain their activity patterns throughout the year in tropical and subtropical areas. The tree-frog Hypsiboas prasinus occurs in the subtropical Atlantic Forest and remains reproductively active during winter, at temperatures below 10 degrees C. We compared males calling in summer and winter, and found that males of H. prasinus exhibit seasonal adjustments in metabolic and morphometric variables. Individuals calling during winter were larger and showed higher resting metabolic rates than those calling during summer. Calling rates were not affected by season. Winter animals showed lower liver and heart activity level of citrate synthase (CS), partially compensated by larger liver mass. Winter individuals also showed higher activity Of pyruvate kinase (PK) and lower activity of CS in trunk muscles, and higher activity of CS in leg muscles. Winter metabolic adjustments seem to be achieved by both compensatory mechanisms to the lower environmental temperature and a seasonally oriented aerobic depression of several organs. The impact of seasonal metabolic changes on calling performance and the capacity of subtropical anurans for metabolic thermal acclimatization are also discussed. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Anuran amphibians exhibit different patterns of energy substrate utilization that correlate with the intensity of vocal and locomotor activities. Given the remarkable differences among species in breeding and feeding strategies, and the different ways energy is used in the whole animal, the suggested correlations between calling and locomotor behavior and the level of energy substrates in the muscles responsible for such activities are more complex than previously reported. We explored the relationships between calling and locomotor behavior and energy supply to trunk and hindlimb muscles, respectively, within the ecologically diverse tree-frog genus Scinax. Specifically, we measured the relative amount of carbohydrates and lipids in these two groups of muscles, and in the liver of three species of Scinax that differ in vocal and locomotor performance, and compared our results with those of two other species for which comparable data are available. We also compared the contents of lipids and carbohydrates of conspecific males collected at the beginning and after 4 h of calling activity. The stomach content to potential feeding opportunities across species was also assessed in both groups of males. Scinax hiemalis and S. rizibilis exhibit comparatively low and episodic calling during long periods of activity whereas S. crospedospilus calls at higher rates over shorter periods. Male S. hiemalis had highest levels of trunk muscle glycogen followed by those of S. rizilbilis and S. crospedospilus, respectively. There was no correlation between total lipid content in trunk muscle and calling rate among different species, suggesting that other metabolic aspects may be responsible for the energetic support for vocal activity. The levels of lipids and carbohydrates in trunk and hindlimb muscles and liver of males collected at the beginning and 4 h into the calling period were similar across species, so the extent of energetic reserves does not appear to constrain vocal or locomotor activity. Finally, we found exceptionally high levels of carbohydrates and lipids in the liver of S. rizibilis, a trait perhaps related to a long and demanding breeding period.
Resumo:
Thermal and water balance are coupled in anurans, and species with particularly permeable skin avoid overheating more effectively than minimizing variance of body temperature. In turn, temperature affects muscle performance in several ways, so documenting the mean and variance of body temperature of active frogs can help explain variation in behavioral performance. The two types of activities studied in most detail, jumping and calling, differ markedly in duration and intensity, and there are distinct differences in the metabolic profile and fiber type of the supporting muscles. Characteristics of jumping and calling also vary significantly among species, and these differences have a number of implications that we discuss in some detail throughout this paper. One question that emerges from this topic is whether anuran species exhibit activity temperatures that match the temperature range over which they perform best. Although this seems the case, thermal preferences are variable and may not necessarily reflect typical activity temperatures. The performance versus temperature curves and the thermal limits for anuran activity reflect the thermal ecology of species more than their systematic position. Anuran thermal physiology, therefore, seems to be phenotypically plastic and susceptible to adaptive evolution. Although generalizations regarding the mechanistic basis of such adjustments are not yet possible, recent attempts have been made to reveal the mechanistic basis of acclimation and acclimatization. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Anuran amphibians exhibit different patterns of energy substrate utilization that correlate with the intensity of vocal and locomotor activities. Given the remarkable differences among species in breeding and feeding strategies, and the different ways energy is used in the whole animal, the suggested correlations between calling and locomotor behavior and the level of energy substrates in the muscles responsible for such activities are more complex than previously reported. We explored the relationships between calling and locomotor behavior and energy supply to trunk and hindlimb muscles, respectively, within the ecologically diverse tree-frog genus Scinax. Specifically, we measured the relative amount of carbohydrates and lipids in these two groups of muscles, and in the liver of three species of Scinax that differ in vocal and locomotor performance, and compared our results with those of two other species for which comparable data are available. We also compared the contents of lipids and carbohydrates of conspecific males collected at the beginning and after 4 h of calling activity. The stomach content to potential feeding opportunities across species was also assessed in both groups of males. Scinax hiemalis and S. rizibilis exhibit comparatively low and episodic calling during long periods of activity whereas S. crospedospilus calls at higher rates over shorter periods. Male S. hiemalis had highest levels of trunk muscle glycogen followed by those of S. rizilbilis and S. crospedospilus, respectively. There was no correlation between total lipid content in trunk muscle and calling rate among different species, suggesting that other metabolic aspects may be responsible for the energetic support for vocal activity. The levels of lipids and carbohydrates in trunk and hindlimb muscles and liver of males collected at the beginning and 4 h into the calling period were similar across species, so the extent of energetic reserves does not appear to constrain vocal or locomotor activity. Finally, we found exceptionally high levels of carbohydrates and lipids in the liver of S. rizibilis, a trait perhaps related to a long and demanding breeding period.
Resumo:
Ectotherm antipredator behaviour might be strongly affected both by body temperature and size: when environmental temperatures do not favour maximal locomotor performance, large individuals may confront predators, whereas small animals may flee, simply because they have no other option. However, integration of body size and temperature effects is rarely approached in the study of antipredator behaviour in vertebrate ectotherms. In the present study we investigated whether temperature affects antipredator responses of tegu lizards, Tupinambis merianae, with distinct body sizes, testing the hypothesis that small tegus (juveniles) run away from predators regardless of the environmental temperature, because defensive aggression may not be an effective predator deterrent, whereas adults, which are larger, use aggressive defence at low temperatures, when running performance might be suboptimal. We recorded responses of juvenile (small) and adult (large) tegu lizards to a simulated predatory attack at five environmental temperatures in the laboratory. Most differences between the two size classes were observed at low temperatures: large tegus were more aggressive overall than were small tegus at all temperatures tested, but at lower temperatures, the small lizards often used escape responses whereas the large ones either adopted a defensive posture or remained inactive. These results provide strong evidence that body size and temperature affect the antipredator responses of vertebrate ectotherms. We discuss the complex and intricate network of evolutionary and ecological parameters that are likely to be involved in the evolution of such interactions. (C) 2009 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Diversas espécies de anuros da família Leptodactylidae se reproduzem em corpos dágua sazonais, temporários e mantidos exclusivamente por chuvas. Em períodos de estiagem prolongada a poça pode secar completamente, ocasionando elevadas taxas de mortalidade de ovos e girinos dessas espécies, podendo exercer forte pressão seletiva na evolução de mecanismos de resistência e sobrevivência nas fases iniciais do desenvolvimento. Algumas espécies de girinos conseguem sobreviver cerca de cinco dias fora dágua o que pode proporcionar uma adaptação vantajosa, porque possibilita a sobrevivência dos girinos por um período que pode ser suficiente para a reincidência de novas chuvas e restabelecimento do corpo dágua. Apesar dessa capacidade de sobrevivência, pouco se sabe sobre as possíveis modificações que a desidratação pode causar na locomoção e na morfologia durante o desenvolvimento desses animais. O presente trabalho teve como objetivo avaliar o efeito do estresse hídrico: (1) no nível de sobrevivência e perda de massa corpórea; (2) no desempenho locomotor; (3) na morfologia externa (morfometria linear) e interna, analisando tanto o volume total quanto o volume visceral (estereologia); e (4) no tempo até metamorfose após o estresse. Utilizamos girinos de duas espécies de anuros, Leptodactylus fuscus (Leptodactylinae) e Physalaemus nattereri (Leiuperinae), ambas as espécies se reproduzem em corpos dágua temporários, em áreas com estação seca definida estando, portanto sujeitas as mesmas pressões seletivas. Além disso, as duas espécies apresentam modos reprodutivos diferentes, podendo apresentar diferentes graus de resistência ao estresse hídrico. Os girinos das duas espécies foram divididos em dois grupos, os que ficaram em água (grupo controle) e os que foram submetidos ao estresse hídrico (grupo tratamento), por três períodos de tempo (12, 24 e 72 horas). Houve diferenças significativas para valores de perda de massa entre os grupos controle e tratamento em ambas as espécies, sendo o grupo tratamento que mais perdeu massa corpórea em todos os períodos, além disso, quase metade dos girinos de P. nattereri morreram em 36 horas de estresse. Não houve diferenças significativas para os dados de desempenho locomotor e volume total entre os grupos testado para girinos de L. fuscus, mas houve diferenças morfometricas significantes nos componentes relacionados a cauda e no volume visceral, onde, o intestino do grupo tratamento foi menor que do controle. Já em P. nattereri, houve diferenças significativas entre os grupos testados para desempenho locomotor, volume total, morfometria da cauda e volume visceral, sendo o estomago e anexo do tratamento maior que do controle. Nossos resultados sugerem que a exposição ao estresse hídrico não afeta significativamente a morfologia e o desempenho locomotor dos girinos de L. fuscus. No entanto, girinos de P. nattereri apresentaram uma sensibilidade ao estresse hídrico prolongado, principalmente sobre o seu desempenho locomotor.
Resumo:
This study examined the effect of prolonged inactivity, associated with aestivation, on neuromuscular transmission in the green-striped burrowing frog, Cyclorana alboguttata. We compared the structure and function of the neuromuscular junctions on the iliofibularis muscle from active C. alboguttata and from C. alboguttata that had been aestivating for 6 months. Despite the prolonged period of immobility, there was no significant difference in the shape of the terminals (primary, secondary or tertiary branches) or the length of primary terminal branches between aestivators and non-aestivators. Furthermore, there was no significant difference in the membrane potentials of muscle fibres or in miniature end plate potential (EPP) frequency and amplitude. However, there was a significant decrease in evoked transmitter release characterised by a 56% decrease in mean EPP amplitude, and a 29% increase in the failure rate of nerve terminal action potentials to evoke transmitter release. The impact of this suite of neuromuscular characteristics on the locomotor performance of emergent frogs is discussed.
Resumo:
Over the last 50 yr, thermal biology has shifted from a largely physiological science to a more integrated science of behavior, physiology, ecology, and evolution. Today, the mechanisms that underlie responses to environmental temperature are being scrutinized at levels ranging from genes to organisms. From these investigations, a theory of thermal adaptation has emerged that describes the evolution of thermoregulation, thermal sensitivity, and thermal acclimation. We review and integrate current models to form a conceptual model of coadaptation. We argue that major advances will require a quantitative theory of coadaptation that predicts which strategies should evolve in specific thermal environments. Simply combining current models, however, is insufficient to understand the responses of organisms to thermal heterogeneity; a theory of coadaptation must also consider the biotic interactions that influence the net benefits of behavioral and physiological strategies. Such a theory will be challenging to develop because each organism's perception of and response to thermal heterogeneity depends on its size, mobility, and life span. Despite the challenges facing thermal biologists, we have never been more pressed to explain the diversity of strategies that organisms use to cope with thermal heterogeneity and to predict the consequences of thermal change for the diversity of communities.
Resumo:
All copulations in the eastern mosquitofish, Gambusia holbrooki, are coercive-and-achieved by force. Female G. holbrooki never appear to cooperate with males, but vigorously resist matings at all times. We examined the role of females within a sexually coercive mating system by investigating the ability of female G. holbrooki to resist forced copulations after acclimation to 16 degrees C and 32 degrees C for 4-5 weeks. We also examined burst swimming performance of female G. holbrooki after acclimation, as this trait is likely to underlie a female's ability to resist forced matings. We predicted that if female G. holbrooki indiscriminately resist matings from all males, acclimation would enhance female resistance at their acclimation temperature. However, we found that it did not. We also predicted that if females are able to influence the outcome of mating interactions, acclimation to an optimal thermal environment may induce females to reduce resistance. In support of this prediction, females acclimated at 32 degrees C were able to modify their resistance behaviour between exposure to 16 degrees C and 32 degrees C. The rate of copulations experienced by 32 inverted perpendicular C-acclimated females was 2.5 times greater at 32 degrees C than at 16 degrees C. In addition, acclimation at 32 degrees C significantly enhanced burst swimming performance at 32 degrees C but no effect of acclimation was observed at 16 degrees C. Our results suggest that female G. holbrooki are able to play a greater role in determining the outcome of sexual coercive mating interactions than previously thought. (c) 2006 The Association for the Shidy of Animal Behavioor. Published by Elsevier Ltd. All rights reserved.
Resumo:
Incubation temperature influences hatchling phenotypes such as sex, size, shape, color, behavior, and locomotor performance in many reptiles, and there is growing concern that global warming might adversely affect reptile populations by altering frequencies of hatchling phenotypes. Here I overview a recent theoretical model used to predict hatchling sex of reptiles with temperature-dependent sex determination. This model predicts that sex ratios will be fairly robust to moderate global warming as long as eggs experience substantial daily cyclic fluctuations in incubation temperatures so that embryos are exposed to temperatures that inhibit embryonic development for part of the day. I also review studies that examine the influence of incubation temperature on posthatch locomotion performance and growth because these are the traits that are likely to have the greatest effect on hatchling fitness. The majority of these studies used artificial constant-temperature incubation, but some have addressed fluctuating incubation temperature regimes. Although the number of studies is small, it appears that fluctuating temperatures may enhance hatchling locomotor performance. This finding should not be surprising, given that the majority of natural reptile nests are relatively shallow and therefore experience daily fluctuations in incubation temperature.
Resumo:
To survive adverse or unpredictable conditions in the ontogenetic environment, many organisms retain a level of phenotypic plasticity that allows them to meet the challenges of rapidly changing conditions. Larval anurans are widely known for their ability to modify behaviour, morphology and physiological processes during development, making them an ideal model system for studies of environmental effects on phenotypic traits. Although temperature is one of the most important factors influencing the growth, development and metamorphic condition of larval anurans, many studies have failed to include ecologically relevant thermal fluctuations among their treatments. We compared the growth and age at metamorphosis of striped marsh frogs Limnodynastes peronii raised in a diurnally fluctuating thermal regime and a stable regime of the same mean temperature. We then assessed the long-term effects of the larval environment on the morphology and performance of post-metamorphic frogs. Larval L. peronii from the fluctuating treatment were significantly longer throughout development and metamorphosed about 5 days earlier. Frogs from the fluctuating group metamorphosed at a smaller mass and in poorer condition compared with the stable group, and had proportionally shorter legs. Frogs from the fluctuating group showed greater jumping performance at metamorphosis and less degradation in performance during a 10-week dormancy. Treatment differences in performance could not be explained by whole-animal morphological variation, suggesting improved contractile properties of the muscles in the fluctuating group.
Resumo:
Performance of locomotor pointing tasks (goal-directed locomotion) in sport is typically constrained by dynamic factors, such as positioning of opponents and objects for interception. In the team sport of association football, performers have to coordinate their gait with ball displacement when dribbling and when trying to prevent opponent interception when running to kick a ball. This thesis comprises two studies analysing the movement patterns during locomotor pointing of eight experienced youth football players under static and dynamic constraints by manipulating levels of ball displacement (ball stationary or moving) and defensive pressure (defenders absent, or positioned near or far during performance). ANOVA with repeated measures was used to analyse effects of these task constraints on gait parameters during the run-up and cross performance sub-phase. Experiment 1 revealed outcomes consistent with previous research on locomotor pointing. When under defensive pressure, participants performed the run-up more quickly, concurrently modifying footfall placements relative to the ball location over trials. In experiment 2 players coordinated their gait relative to a moving ball significantly differently when under defensive pressure. Despite no specific task instructions being provided beforehand, context dependent constraints interacted to influence footfall placements over trials and running velocity of participants in different conditions. Data suggest that coaches need to manipulate task constraints carefully to facilitate emergent movement behaviours during practice in team games like football.