929 resultados para Local field potential
Resumo:
This paper introduces key ingredients of the dielectric response of a-alumina that go beyond an independent-particle (IP) treatment of the valence-electron excitations. The optical-response functions were calculated from first-principles both at the Bethe-Salpeter and the random-phase approximation (RPA) levels. Excitonic effects obtained within the Bethe-Salpeter framework were found essential for reproducing the low-energy part of the experimental spectra (below 15 eV) and the bound exciton in particular. For higher energies, local-field effects introduced through the RPA modified considerably the IP results and provided a satisfactory account of the reflectivity spectra and of the position and shape of the dominant bulk plasmon resonance in the electron energy-loss spectra.
Resumo:
Deep Brain Stimulation (DBS) is a treatment routinely used to alleviate the symptoms of Parkinson's disease (PD). In this type of treatment, electrical pulses are applied through electrodes implanted into the basal ganglia of the patient. As the symptoms are not permanent in most patients, it is desirable to develop an on-demand stimulator, applying pulses only when onset of the symptoms is detected. This study evaluates a feature set created for the detection of tremor - a cardinal symptom of PD. The designed feature set was based on standard signal features and researched properties of the electrical signals recorded from subthalamic nucleus (STN) within the basal ganglia, which together included temporal, spectral, statistical, autocorrelation and fractal properties. The most characterized tremor related features were selected using statistical testing and backward algorithms then used for classification on unseen patient signals. The spectral features were among the most efficient at detecting tremor, notably spectral bands 3.5-5.5 Hz and 0-1 Hz proved to be highly significant. The classification results for determination of tremor achieved 94% sensitivity with specificity equaling one.
Resumo:
It has been recently shownthat localfield potentials (LFPs)fromthe auditory and visual cortices carry information about sensory stimuli, but whether this is a universal property of sensory cortices remains to be determined. Moreover, little is known about the temporal dynamics of sensory information contained in LFPs following stimulus onset. Here we investigated the time course of the amount of stimulus information in LFPs and spikes from the gustatory cortex of awake rats subjected to tastants and water delivery on the tongue. We found that the phase and amplitude of multiple LFP frequencies carry information about stimuli, which have specific time courses after stimulus delivery. The information carried by LFP phase and amplitude was independent within frequency bands, since the joint information exhibited neither synergy nor redundancy. Tastant information in LFPs was also independent and had a different time course from the information carried by spikes. These findings support the hypothesis that the brain uses different frequency channels to dynamically code for multiple features of a stimulus.
Resumo:
A specific separated-local-field NMR experiment, dubbed Dipolar-Chemical-Shift Correlation (DIPSHIFT) is frequently used to study molecular motions by probing reorientations through the changes in XH dipolar coupling and T-2. In systems where the coupling is weak or the reorientation angle is small, a recoupled variant of the DIPSHIFT experiment is applied, where the effective dipolar coupling is amplified by a REDOR-like pi-pulse train. However, a previously described constant-time variant of this experiment is not sensitive to the motion-induced T-2 effect, which precludes the observation of motions over a large range of rates ranging from hundreds of Hz to around a MHz. We present a DIPSHIFT implementation which amplifies the dipolar couplings and is still sensitive to T-2 effects. Spin dynamics simulations, analytical calculations and experiments demonstrate the sensitivity of the technique to molecular motions, and suggest the best experimental conditions to avoid imperfections. Furthermore, an in-depth theoretical analysis of the interplay of REDOR-like recoupling and proton decoupling based on Average-Hamiltonian Theory was performed, which allowed explaining the origin of many artifacts found in literature data. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
The main inputs to the hippocampus arise from the entorhinal cortex (EC) and form a loop involving the dentate gyrus, CA3 and CA1 hippocampal subfields and then back to EC. Since the discovery that the hippocampus is involved in memory formation in the 50's, this region and its circuitry have been extensively studied. Beyond memory, the hippocampus has also been found to play an important role in spatial navigation. In rats and mice, place cells show a close relation between firing rate and the animal position in a restricted area of the environment, the so-called place field. The firing of place cells peaks at the center of the place field and decreases when the animal moves away from it, suggesting the existence of a rate code for space. Nevertheless, many have described the emergence of hippocampal network oscillations of multiple frequencies depending on behavioral state, which are believed to be important for temporal coding. In particular, theta oscillations (5-12 Hz) exhibit a spatio-temporal relation with place cells known as phase precession, in which place cells consistently change the theta phase of spiking as the animal traverses the place field. Moreover, current theories state that CA1, the main output stream of the hippocampus, would interplay inputs from EC and CA3 through network oscillations of different frequencies, namely high gamma (60-100 Hz; HG) and low gamma (30-50 Hz; LG), respectively, which tend to be nested in different phases of the theta cycle. In the present dissertation we use a freely available online dataset to make extensive computational analyses aimed at reproducing classical and recent results about the activity of place cells in the hippocampus of freely moving rats. In particular, we revisit the debate of whether phase precession is due to changes in firing frequency or space alone, and conclude that the phenomenon cannot be explained by either factor independently but by their joint influence. We also perform novel analyses investigating further characteristics of place cells in relation to network oscillations. We show that the strength of theta modulation of spikes only marginally affects the spatial information content of place cells, while the mean spiking theta phase has no influence on spatial information. Further analyses reveal that place cells are also modulated by theta when they fire outside the place field. Moreover, we find that the firing of place cells within the theta cycle is modulated by HG and LG amplitude in both CA1 and EC, matching cross-frequency coupling results found at the local field potential level. Additionally, the phase-amplitude coupling in CA1 associated with spikes inside the place field is characterized by amplitude modulation in the 40-80 Hz range. We conclude that place cell firing is embedded in large network states reflected in local field potential oscillations and suggest that their activity might be seen as a dynamic state rather than a fixed property of the cell.
Resumo:
It has been recently shownthat localfield potentials (LFPs)fromthe auditory and visual cortices carry information about sensory stimuli, but whether this is a universal property of sensory cortices remains to be determined. Moreover, little is known about the temporal dynamics of sensory information contained in LFPs following stimulus onset. Here we investigated the time course of the amount of stimulus information in LFPs and spikes from the gustatory cortex of awake rats subjected to tastants and water delivery on the tongue. We found that the phase and amplitude of multiple LFP frequencies carry information about stimuli, which have specific time courses after stimulus delivery. The information carried by LFP phase and amplitude was independent within frequency bands, since the joint information exhibited neither synergy nor redundancy. Tastant information in LFPs was also independent and had a different time course from the information carried by spikes. These findings support the hypothesis that the brain uses different frequency channels to dynamically code for multiple features of a stimulus.
Resumo:
It has been recently shownthat localfield potentials (LFPs)fromthe auditory and visual cortices carry information about sensory stimuli, but whether this is a universal property of sensory cortices remains to be determined. Moreover, little is known about the temporal dynamics of sensory information contained in LFPs following stimulus onset. Here we investigated the time course of the amount of stimulus information in LFPs and spikes from the gustatory cortex of awake rats subjected to tastants and water delivery on the tongue. We found that the phase and amplitude of multiple LFP frequencies carry information about stimuli, which have specific time courses after stimulus delivery. The information carried by LFP phase and amplitude was independent within frequency bands, since the joint information exhibited neither synergy nor redundancy. Tastant information in LFPs was also independent and had a different time course from the information carried by spikes. These findings support the hypothesis that the brain uses different frequency channels to dynamically code for multiple features of a stimulus.
Resumo:
Multisensor recordings are becoming commonplace. When studying functional connectivity between different brain areas using such recordings, one defines regions of interest, and each region of interest is often characterized by a set (block) of time series. Presently, for two such regions, the interdependence is typically computed by estimating the ordinary coherence for each pair of individual time series and then summing or averaging the results over all such pairs of channels (one from block 1 and other from block 2). The aim of this paper is to generalize the concept of coherence so that it can be computed for two blocks of non-overlapping time series. This quantity, called block coherence, is first shown mathematically to have properties similar to that of ordinary coherence, and then applied to analyze local field potential recordings from a monkey performing a visuomotor task. It is found that an increase in block coherence between the channels from V4 region and the channels from prefrontal region in beta band leads to a decrease in response time.
Resumo:
Brain signals often show fluctuations in particular frequency bands, which are highly conserved across species and are associated with specific behavioural states. Such rhythmic patterns can be captured in the local field potential (LFP), which is obtained by low-pass filtering the extracellular signal recorded from microelectrodes. However, LFP also captures other neural processes that are associated with spikes, such as synaptic events preceding a spike, low-frequency component of the action potential (spike bleed-through'') and spike afterhyperpolarization, which pose difficulties in the estimation of the amplitude and phase of the rhythm with respect to spikes. Here we discuss these issues and different techniques that have been used to dissociate the rhythm from other neural events in the LFP.
Resumo:
Signals recorded from the brain often show rhythmic patterns at different frequencies, which are tightly coupled to the external stimuli as well as the internal state of the subject. In addition, these signals have very transient structures related to spiking or sudden onset of a stimulus, which have durations not exceeding tens of milliseconds. Further, brain signals are highly nonstationary because both behavioral state and external stimuli can change on a short time scale. It is therefore essential to study brain signals using techniques that can represent both rhythmic and transient components of the signal, something not always possible using standard signal processing techniques such as short time fourier transform, multitaper method, wavelet transform, or Hilbert transform. In this review, we describe a multiscale decomposition technique based on an over-complete dictionary called matching pursuit (MP), and show that it is able to capture both a sharp stimulus-onset transient and a sustained gamma rhythm in local field potential recorded from the primary visual cortex. We compare the performance of MP with other techniques and discuss its advantages and limitations. Data and codes for generating all time-frequency power spectra are provided.
Resumo:
The temporal structure of neuronal spike trains in the visual cortex can provide detailed information about the stimulus and about the neuronal implementation of visual processing. Spike trains recorded from the macaque motion area MT in previous studies (Newsome et al., 1989a; Britten et al., 1992; Zohary et al., 1994) are analyzed here in the context of the dynamic random dot stimulus which was used to evoke them. If the stimulus is incoherent, the spike trains can be highly modulated and precisely locked in time to the stimulus. In contrast, the coherent motion stimulus creates little or no temporal modulation and allows us to study patterns in the spike train that may be intrinsic to the cortical circuitry in area MT. Long gaps in the spike train evoked by the preferred direction motion stimulus are found, and they appear to be symmetrical to bursts in the response to the anti-preferred direction of motion. A novel cross-correlation technique is used to establish that the gaps are correlated between pairs of neurons. Temporal modulation is also found in psychophysical experiments using a modified stimulus. A model is made that can account for the temporal modulation in terms of the computational theory of biological image motion processing. A frequency domain analysis of the stimulus reveals that it contains a repeated power spectrum that may account for psychophysical and electrophysiological observations.
Some neurons tend to fire bursts of action potentials while others avoid burst firing. Using numerical and analytical models of spike trains as Poisson processes with the addition of refractory periods and bursting, we are able to account for peaks in the power spectrum near 40 Hz without assuming the existence of an underlying oscillatory signal. A preliminary examination of the local field potential reveals that stimulus-locked oscillation appears briefly at the beginning of the trial.
Resumo:
Plant-derived cannabinoids (phytocannabinoids) are compounds with emerging therapeutic potential. Early studies suggested that cannabidiol (CBD) has anticonvulsant properties in animal models and reduced seizure frequency in limited human trials. Here, we examine the anti-epileptiform and anti-seizure potential of CBD using in vitro electrophysiology and an in vivo animal seizure model, respectively. CBD (0.01-100 muM) effects were assessed in vitro using the Mg(2+)-free and 4-aminopyridine (4-AP) models of status epilepticus-like epileptiform activity in hippocampal brain slices via multi-electrode array (MEA) recordings. In the Mg(2+)-free model, CBD decreased epileptiform local field potential (LFP) burst amplitude (in CA1 and dentate gyrus (DG) regions) and burst duration (in all regions) and increased burst frequency (in all regions). In the 4-AP model, CBD decreased LFP burst amplitude (in CA1, only at 100 muM CBD), burst duration (in CA3 and DG), and burst frequency (in all regions). CBD (1, 10 and 100 mg/kg) effects were also examined in vivo using the pentylenetetrazole (PTZ) model of generalised seizures. CBD (100 mg/kg) exerted clear anticonvulsant effects with significant decreases in incidence of severe seizures and mortality in comparison to vehicle-treated animals. Finally, CBD acted with only low affinity at cannabinoid CB(1) receptors and displayed no agonist activity in [(35)S]GTPgammaS assays in cortical membranes. These findings suggest that CBD acts to inhibit epileptiform activity in vitro and seizure severity in vivo. Thus, we demonstrate the potential of CBD as a novel anti-epileptic drug (AED) in the unmet clinical need associated with generalised seizures.
Resumo:
Deep Brain Stimulation (DBS) has been successfully used throughout the world for the treatment of Parkinson's disease symptoms. To control abnormal spontaneous electrical activity in target brain areas DBS utilizes a continuous stimulation signal. This continuous power draw means that its implanted battery power source needs to be replaced every 18–24 months. To prolong the life span of the battery, a technique to accurately recognize and predict the onset of the Parkinson's disease tremors in human subjects and thus implement an on-demand stimulator is discussed here. The approach is to use a radial basis function neural network (RBFNN) based on particle swarm optimization (PSO) and principal component analysis (PCA) with Local Field Potential (LFP) data recorded via the stimulation electrodes to predict activity related to tremor onset. To test this approach, LFPs from the subthalamic nucleus (STN) obtained through deep brain electrodes implanted in a Parkinson patient are used to train the network. To validate the network's performance, electromyographic (EMG) signals from the patient's forearm are recorded in parallel with the LFPs to accurately determine occurrences of tremor, and these are compared to the performance of the network. It has been found that detection accuracies of up to 89% are possible. Performance comparisons have also been made between a conventional RBFNN and an RBFNN based on PSO which show a marginal decrease in performance but with notable reduction in computational overhead.
Resumo:
Deep Brain Stimulation has been used in the study of and for treating Parkinson’s Disease (PD) tremor symptoms since the 1980s. In the research reported here we have carried out a comparative analysis to classify tremor onset based on intraoperative microelectrode recordings of a PD patient’s brain Local Field Potential (LFP) signals. In particular, we compared the performance of a Support Vector Machine (SVM) with two well known artificial neural network classifiers, namely a Multiple Layer Perceptron (MLP) and a Radial Basis Function Network (RBN). The results show that in this study, using specifically PD data, the SVM provided an overall better classification rate achieving an accuracy of 81% recognition.