920 resultados para Liver glycogen
Resumo:
Phenylalanine hydroxylase is regulated in a complex manner, including activation by phosphorylation. It is normally found as an equilibrium of dimeric and tetrameric species, with the tetramer thought to be the active form. We converted the protein to the dimeric form by deleting the C-terminal 24 residues and show that the truncated protein remains active and regulated by phosphorylation. This indicates that changes in the tetrameric quaternary structure of phenylalanine hydroxylase are not required for enzyme activation. Truncation also facilitates crystallization of both phosphorylated and dephosphorylated forms of the enzyme.
Resumo:
This study investigated the in vivo effects of the Bothrops Jararaca venom (BjV) on general metabolic profile and, specifically. oil muscle protein metabolism in rats. The crude venom (0.4 mg/kg body weight, IV) was infused in awake rats, and plasma activity of enzymes and metabolites levels were determined after 1, 2, 3, and 4 hours. BjV increased urea, lactate, and activities of creatine kinase. lactate dehydrogenase. and aspartate aminotransferase after 4 hours. The content of liver glycogen was reduced by BjV. Protein metabolism was evaluated by means of microdialysis technique and in isolated muscles. BjV induced increase in the muscle interstitial-arterial tyrosine concentration difference. indicating a high protein catabolism. The myotoxicity induced by this venom is associated with reduction of protein synthesis and increase in rates of overall proteolysis, which was accompanied by activation of lysosomal and ubiquitin-proteasome systems without changes in protein levels of cathepsins and ubiquitin-protein conjugates.
Resumo:
Fish transport is one of the most stressful procedures in aquaculture facilities. The present work evaluated the stress response of matrinxã to transportation procedures, and the use of clove oil as an alternative to reduce the stress response to transport in matrinxã (Brycon cephalus). Clove oil solutions were tested in concentrations of 0, 1, 5 and 10 mg/L during matrinxã transportation in plastic bags, supplied with water and oxygen as the usual field procedures in Brazil. Clove oil reduced some of the physiological stress responses (plasma cortisol, glucose and ions) that we measured. The high energetic cost to matrinxã cope with the transport stress was clear by the decrease of liver glycogen after transport. Our results suggest that clove oil (5 mg/l) can mitigate the stress response in matrinxã subjected to transport.
Resumo:
The addition of salt to the water has been used to mitigate stress and improve survival in fishes. This study investigated the effects of sodium chloride (0.0, 1.0, 3.0 and 6.0 g/l) on levels of plasma cortisol, glucose, tryacilglycerol, total protein, hematocrit, hemoglobin, erythrocyte number, liver glycogen and lipid, and muscle lipid in adult matrinxã(Brycon amazonicum) after a 4-h transport and during a 96-h recovery period. Fish were sampled before and after transport, and 24 and 96 h of the recovery period. Plasma cortisol was higher than initial condition immediately after transportation, except in fish transported in 3.0 and 6.0 g/l of salt. A similar pattern was observed for blood glucose but fish transported in water with 0.0, 1.0 and 3.0 g/l of salt needed more than 24 h to return to the initial condition. Liver glycogen was lower after transport in fish not exposed to salt. Hemoglobin, erythrocyte number, total plasma protein and liver lipid did not change during the experiment but hematocrit was lower after transport in all treatments and returned to pre-transport values in 24 h. Reductions of muscle lipid and plasma tryacilglycerol were observed during the recovery period in fish from all treatments. The results show that 6.0 g/l NaCl added to the transport water reduce the stress responses and a 96-h recovery period is needed if no salt is used to mitigate the stress.
Resumo:
Pirarucu (Arapaima gigas) is an obligatory air-breathing fish from the Amazon basin. Previous study showed that pirarucu juveniles present a latency period in their response to moderate stress (transportation). Therefore the objective of this study was to verify the effects of a prolonged air exposure stress in lactate, glucose, cortisol, haematocrit, haemoglobin, and liver glycogen in pirarucu. Thirty-six fish were handled by netting and subjected to air exposure for 75-min. Six fish were sampled before handling and at 0, 6, 24, 48, and 96h after handling. Fish cortisol, lactate and haematocrit rose after handling, returning to previous unstressed values on the following sampling (6h after handling). Glucose increased significantly after handling and that was maintained for 24 h. There were no changes in haemoglobin and liver glycogen as a consequence of handling. The results demonstrate a quick response when exposed to an acute stressor and a fast recovery, suggesting that pirarucu does not use their glycogen reserves during an acute stress. The results suggest that pirarucu exhibit physiological stress responses to handling similar in magnitude to those previously documented for many teleostean fishes, including salmonids.
Resumo:
To assess the role of the alpha1b-adrenergic receptor (AR) in glucose homeostasis, we investigated glucose metabolism in knockout mice deficient of this receptor subtype (alpha1b-AR-/-). Mutant mice had normal blood glucose and insulin levels, but elevated leptin concentrations in the fed state. During the transition to fasting, glucose and insulin blood concentrations remained markedly elevated for at least 6 h and returned to control levels after 24 h whereas leptin levels remained high at all times. Hyperinsulinemia in the post-absorptive phase was normalized by atropine or methylatropine indicating an elevated parasympathetic activity on the pancreatic beta cells, which was associated with increased levels of hypothalamic NPY mRNA. Euglycemic clamps at both low and high insulin infusion rates revealed whole body insulin resistance with reduced muscle glycogen synthesis and impaired suppression of endogenous glucose production at the low insulin infusion rate. The liver glycogen stores were 2-fold higher in the fed state in the alpha1b-AR-/- compared with control mice, but were mobilized at the same rate during the fed to fast transition or following glucagon injections. Finally, high fat feeding for one month increased glucose intolerance and body weight in the alpha1b-AR-/-, but not in control mice. Altogether, our results indicate that in the absence of the alpha1b-AR the expression of hypotalamic NPY and the parasympathetic nervous activity are both increased resulting in hyperinsulinemia and insulin resistance as well as favoring obesity and glucose intolerance development during high fat feeding.
Resumo:
Specialized glucosensing neurons are present in the hypothalamus, some of which neighbor the median eminence, where the blood-brain barrier has been reported leaky. A leaky blood-brain barrier implies high tissue glucose levels and obviates a role for endothelial glucose transporters in the control of hypothalamic glucose concentration, important in understanding the mechanisms of glucose sensing We therefore addressed the question of blood-brain barrier integrity at the hypothalamus for glucose transport by examining the brain tissue-to-plasma glucose ratio in the hypothalamus relative to other brain regions. We also examined glycogenolysis in hypothalamus because its occurrence is unlikely in the potential absence of a hypothalamus-blood interface. Across all regions the concentration of glucose was comparable at a given plasma glucose concentration and was a near linear function of plasma glucose. At steady-state, hypothalamic glucose concentration was similar to the extracellular hypothalamic glucose concentration reported by others. Hypothalamic glycogen fell at a rate of approximately 1.5 micromol/g/h and remained present in substantial amounts. We conclude for the hypothalamus, a putative primary site of brain glucose sensing that: the rate-limiting step for glucose transport into brain cells is at the blood-hypothalamus interface, and that glycogenolysis is consistent with a substantial blood -to- intracellular glucose concentration gradient.
Resumo:
Endogenous glucose production rate (EGPR) remains constant when lactate is infused in healthy humans. A decrease of glycogenolysis or of gluconeogenesis from endogenous precursors or a stimulation of glycogen synthesis, may all be involved; This autoregulation does not depend on changes in glucoregulatory hormones. It may be speculated that alterations in basal sympathetic tone may be involved. To gain insights into the mechanisms responsible for autoregulation of EGPR, glycogenolysis and gluconeogenesis were measured, with a novel method (based on the prelabelling of endogenous glycogen with 13C glucose, and determination of hepatic 13C glycogen enrichment from breath 13CO2 and respiratory gas exchanges) in healthy humans infused with lactate or saline. These measurements were performed with or without beta-adrenergic receptor blockade (propranolol). Infusion of lactate increased energy expenditure, but did not increase EGPR; the relative contributions of gluconeogenesis and glycogenolysis to EGPR were also unaltered. This indicates that autoregulation is attained, at least in part, by inhibition of gluconeogenesis from endogenous precursors. beta-adrenergic receptor blockade alone (with propranolol) did not alter EGPR, glycogenolysis or gluconeogenesis. During infusion of lactate, propranolol decreased the thermic effect of lactate but EGPR remained constant. This indicates that alterations of beta-adrenergic activity is not required for autoregulation of EGPR.
Resumo:
1. The effects of "cafeteria feeding" on primiparous Wistar rats during lactation have been studied by measuring circulating levels of glucose, amino acids, lactate, urea and ammonia as well as glycogen levels in liver and muscle. 2. No significant changes in glucose levels were observed despite alterations in blood glucose compartmentation. 3. Compared with controls, the dams given the cafeteria diet had higher liver glycogen stores which were more easily mobilized at the peak of lactation. 4. Rats given the cafeteria diet showed a lower amino acid utilization than controls and adequately maintained circulating levels, as determined by the lower circulating levels of ammonia and urea. 5. No significant differences in body-weight were observed in the period studied despite increasing dam weight after weaning in the cafeteria-fed group. 6. The size of pups of cafeteria-fed dams was greater than that of controls, and the differences were marked after weaning, when the metabolic machinery of the cafeteria pup maintained high protein accretion and body build-up using fat as the main energy substrate characteristic of the preweaning stage. The controls, however, changed to greater utilization of amino acids as an energy substrate and adapted to high-protein (lowbiological-quality) diets with a significantly different pattern of circulating nitrogen distribution.
Resumo:
Acute ethanol administration stimulates sympathetic nervous system activity. The present study was designed to determine whether this sympathetic activation affects glycogenolysis and total hepatic glucose production (HGP) during ethanol-induced inhibition of gluconeogenesis. Nineteen volunteers participated in four protocols. Two protocols aimed to study--using combined infusion of [6,6-2H2]glucose and [U-13C]glucose, VCO2 and 13CO2 measurements--the effects of ethanol infusion alone (n = 10) or with propranolol (n = 6) or phentolamine infusion (n = 4) on HGP, glucose disposal (Rd), glucose oxidation [13C]Glcox and non-oxidative glucose disposal (NOGD = Rd - [13C]Glcox). The fourth protocol assessed the effects of saline infusion alone on HGP. Using ethanol, HGP decreased by 23%, Rd by 20% and glycaemia by 9% (all P < 0.001); heart rate increased by 10%, whereas blood pressure remained unchanged. The effects were not observed with saline, except a slight (10%) decrease in HGP (P < 0.01 vs. ethanol). Ethanol did not affect [13C]Glcox but decreased NOGD by 73% (P < 0.001). Propranolol or phentolamine did not alter any of the effects of ethanol on glucose metabolism, but decreased mean arterial pressure. Propranolol prevented the ethanol-induced increase in heart rate. In conclusion, ethanol decreased blood glucose by decreasing HGP, presumably by inhibiting gluconeogenesis. Sympathetic activation prevented the decrease in blood pressure produced by ethanol but did not stimulate glycogenolysis.
Resumo:
The metabolic responses of adult and young freshwater Kinosternon scorpioides turtles raised in captivity were evaluated. Two experiments were performed: a) blood metabolite changes caused by food deprivation, and b) liver and muscle glycogen and total lipid differences after fasting and refeeding. Blood glucose concentration of young animals was susceptible to food deprivation. In both groups this metabolite decreased after 30 days of fasting. Feeding for 15 days did not recover blood glucose. Total seric proteins were not affected by food deprivation. Fasting decreased blood urea nitrogen and the highest difference was found around 30 days. Uric acid increased in young animals after 60 days of fasting. Triacylglicerol decreased after 15 days of fasting and refeeding for 15 days recovered the pre-fasting levels. Free fatty acid plasma tended to increase around 15 days of fasting. Liver glycogen decreased at day 15 of fasting, being stable thereafter while muscle glycogen decreased at a slower rate. Total liver lipid stabilized after 30 days and then decreased 70% after 60 days of fasting. Muscle lipids remained stable throughout fasting. It could be concluded that fasting of Kinosternon scorpioides led to metabolic adaptations similar to the one reported from reptiles and fish.
Resumo:
Several human studies suggest that light-to-moderate alcohol consumption is associated with enhanced insulin sensitivity, but these studies are not free of conflicting results. To determine if ethanol-enhanced insulin sensitivity could be demonstrated in an animal model, male Wistar rats were fed a standard chow diet and received drinking water without (control) or with different ethanol concentrations (0.5, 1.5, 3, 4.5 and 7%, v/v) for 4 weeks ad libitum. Then, an intravenous insulin tolerance test (IVITT) was performed to determine insulin sensitivity. Among the ethanol groups, only the 3% ethanol group showed an increase in insulin sensitivity based on the increase of the plasma glucose disappearance rate in the IVITT (30%, P<0.05). In addition, an intravenous glucose tolerance test (IVGTT) was performed in control and 3% ethanol animals. Insulin sensitivity was confirmed in 3% ethanol rats based on the reduction of insulin secretion in the IVGTT (35%, P<0.05), despite the same glucose profile. Additionally, the 3% ethanol treatment did not impair body weight gain or plasma aspartate aminotransferase and alanine aminotransferase activities. Thus, the present study established that 3% ethanol in the drinking water for 4 weeks in normal rats is a model of increased insulin sensitivity, which can be used for further investigations of the mechanisms involved.
Resumo:
The world is facing an explosive increase in the incidence of diabetes mellitus and cost-effective complementary therapies are needed. The effects of Eugenia jambolana, a household remedy for diabetes, were studied. Streptozotocin diabetic female albino Wistar rats weighing 150-200 g (N = 6) were fed E. jambolana seed powder (250, 500 or 1000 mg/kg) for 15 days. Diabetic rats fed 500 and 1000 mg/kg seed powder showed an increase in body weight on day 20 in relation to day 5 (6 ± 4.7, 9 ± 7.8 vs diabetic control -16 ± 7.1 g, P < 0.001), a decrease in fasting blood glucose (75 ± 11.9, 123 ± 14.4 vs diabetic control -34 ± 12.1 mg/dl, P < 0.001), a difference in post-treatment fasting and peak blood glucose (38 ± 11.9, 36 ± 14.2 vs diabetic control 78 ± 11.9 mg/dl, P < 0.001), and a difference in liver glycogen (50 ± 6.8, 52 ± 7.5 vs normal control 90 ± 6.6 µg/g of liver tissue, P < 0.001). Tri-terpenoids, tannins, gallic acid, and oxalic acid were the chemical constituents detected in E. jambolana seed. The best results were obtained with an oral dose of 500 mg/kg. Subacute toxicity studies with a single administration of 2.5 and 5.0 g/kg seed powder showed no mortality or abnormality. These data on the antidiabetic effect of E. jambolana seed are adequate for approval of phase 2 clinical trials to evaluate this seed powder as complementary therapy in type 2 and type 1 diabetes.
Resumo:
Introduction: La ménopause est associée à l’insulino-résistance et augmente le risque de diabète de type 2 (DT2) chez les sujets sains. Cependant, peu d’informations existent à savoir comment la ménopause et l’activité physique peuvent influencer l’homéostasie du glucose chez des sujets insulino-résistants. Objectifs: Déterminer 1) l’effet du retrait des œstrogènes ovariens par ovariectomie sur l’homéostasie du glucose des rates ZDF (Zucker Diabetic Fatty; prédisposées au diabète de type 2) et 2) évaluer l’influence de l’activité physique volontaire sur ces réponses. Méthodologie: Vingt-quatre rates furent d’abord nourries et hébergées dans des cages conventionnelles les 28 premiers jours pour ensuite subir une ovariectomie (OVX, n=16) ou une opération simulée (SHAM-Inactive, n=8). Les rates ovariectomisées furent ensuite assignées au groupe entraîné volontairement dans une cage à roue (OVX-Active, n=8) ou demeurèrent sédentaires (OVX-Inactive, n=8) pendant les 44 jours suivants. Résultats: Au jour 56, la glycémie à l’état nourri fut significativement augmentée par l’ovariectomie (p<0,01) et ramenée au niveau initial chez les rates OVX-Active (p<0,01). L’ovariectomie diminua la captation de glucose induite par l’insuline dans le muscle de façon significative (0,63 ± 0,08 vs 1,13 ± 0,27 μmol•g-1•h-1). L’entraînement améliora la tolérance au glucose (p<0,01) ainsi que la prise de glucose induite par l’insuline dans le muscle (p<0,05). Conclusion: Le retrait des estrogènes ovariens par ovariectomie perturbe l’homéostasie du glucose chez les rates ZDF femelles, sans pour autant provoquer le diabète de type 2. L’activité physique a un effet bénéfique sur l’homéostasie du glucose malgré la perte d’estrogènes ovariens.