861 resultados para Littleleaf disease of pine.
Resumo:
2015
Resumo:
Conflicting results have been reported on the detection of paramyxovirus transcripts in Paget's disease, and a possible explanation is differences in the sensitivity of RT-PCR methods for detecting virus. In a blinded study, we found no evidence to suggest that laboratories that failed to detect viral transcripts had less sensitive RT-PCR assays, and we did not detect measles or distemper transcripts in Paget's samples using the most sensitive assays evaluated.
Introduction: There is conflicting evidence on the possible role of persistent paramyxovirus infection in Paget's disease of bone (PDB). Some workers have detected measles virus (MV) or canine distemper virus (CDV) transcripts in cells and tissues from patients with PDB, but others have failed to confirm this finding. A possible explanation might be differences in the sensitivity of RT-PCR methods for detecting virus. Here we performed a blinded comparison of the sensitivity of different RT-PCR-based techniques for MV and CDV detection in different laboratories and used the most sensitive assays to screen for evidence of viral transcripts in bone and blood samples derived from patients with PDB.
Materials and Methods: Participating laboratories analyzed samples spiked with known amounts of MV and CDV transcripts and control samples that did not contain viral nucleic acids. All analyses were performed on a blinded basis.
Results: The limit of detection for CDV was 1000 viral transcripts in three laboratories (Aberdeen, Belfast, and Liverpool) and 10,000 transcripts in another laboratory (Manchester). The limit of detection for MV was 16 transcripts in one laboratory (NIBSC), 1000 transcripts in two laboratories (Aberdeen and Belfast), and 10,000 transcripts in two laboratories (Liverpool and Manchester). An assay previously used by a U.S.-based group to detect MV transcripts in PDB had a sensitivity of 1000 transcripts. One laboratory (Manchester) detected CDV transcripts in a negative control and in two samples that had been spiked with MV. None of the other laboratories had false-positive results for MV or CDV, and no evidence of viral transcripts was found on analysis of 12 PDB samples using the most sensitive RT-PCR assays for MV and CDV.
Conclusions: We found that RT-PCR assays used by different laboratories differed in their sensitivity to detect CDV and MV transcripts but found no evidence to suggest that laboratories that previously failed to detect viral transcripts had less sensitive RT-PCR assays than those that detected viral transcripts. False-positive results were observed with one laboratory, and we failed to detect paramyxovirus transcripts in PDB samples using the most sensitive assays evaluated. Our results show that failure of some laboratories to detect viral transcripts is unlikely to be caused by problems with assay sensitivity and highlight the fact that contamination can be an issue when searching for pathogens by sensitive RT-PCR-based techniques.
Resumo:
Cladobotryum dendroides (= Dactylium dendroides) has hitherto been regarded as the major causal agent of cobweb disease of the cultivated mushroom, Agaricus bisporus. Nucleotide sequence data for the internal transcribed spacer (ITS) regions of four Cladobotryum/Hypomyces species reported to be associated with cobweb disease, however, indicate that the most common pathogen is now C. mycophilum. This cobweb pathogen varies somewhat in conidial septation from published descriptions of C. mycophilum and lacks the distinctive colony odor. ITS sequencing revealed minor nucleotide variation which split isolates of the pathogen into three subgroups, two comprising isolates that were sensitive to methylbenzimidazole carbamate (MBC) fungicides and one comprising MBC-resistant isolates. The MBC-resistant isolates, which were only obtained from Ireland and Great Britain, clustered together strongly in randomly amplified polymorphic DNA (RAPD) PCR analysis, suggesting that they may be clonal. The MBC-sensitive isolates were more diverse. A RAPD fragment of 800 to 900 bp, containing a microsatellite and found in the MBC-resistant isolates, also indicated their clonal nature; the microsatellites of these isolates contained the same number of GA repeats. Smaller, polymorphic microsatellites, similarly comprising GA repeats, in the MBC-sensitive isolates in general correlated with their geographic origin.
Resumo:
Risks are an essential feature of future climate change impacts. We explore whether knowledge that climate change might be the source of increasing pine beetle impacts on public or private forests affects stated risk estimates of damage, elicited using the exchangeability method. We find that across subjects the difference between public and private forest status does not influence stated risks, but the group told that global warming is the cause of pine beetle damage has significantly higher risk perceptions than the group not given this information.
Resumo:
For reasons of unequal distribution of more than one nematode species in wood, and limited availability of wood samples required for the PCR-based method for detecting pinewood nematodes in wood tissue of Pinus massoniana, a rapid staining-assisted wood sampling method aiding PCR-based detection of the pine wood nematode Bursaphelenchus xylophilus (Bx) in small wood samples of P. massoniana was developed in this study. This comprised a series of new techniques: sampling, mass estimations of nematodes using staining techniques, and lowest limit Bx nematode mass determination for PCR detection. The procedure was undertaken on three adjoining 5-mg wood cross-sections, of 0.5 · 0.5 · 0.015 cm dimension, that were cut from a wood sample of 0.5 · 0.5 · 0.5 cm initially, then the larger wood sample was stained by acid fuchsin, from which two 5-mg wood cross-sections (that adjoined the three 5-mg wood cross-sections, mentioned above) were cut. Nematode-staining-spots (NSSs) in each of the two stained sections were counted under a microscope at 100· magnification. If there were eight or more NSSs present, the adjoining three sections were used for PCR assays. The B. xylophilus – specific amplicon of 403 bp (DQ855275) was generated by PCR assay from 100.00% of 5-mg wood cross-sections that contained more than eight Bx NSSs by the PCR assay. The entire sampling procedure took only 10 min indicating that it is suitable for the fast estimation of nematode numbers in the wood of P. massonina as the prelimary sample selections for other more expensive Bx-detection methods such as PCR assay.
Resumo:
The aggressive mushroom competitor, Trichoderma harzianum biotype Th4, produces volatile antifungal secondary metabolites both in culture and during the disease cycle in compost. Th4 cultures produced one such compound only when cultured in the presence of Agaricus bisporus mycelium or liquid medium made from compost colonised with A. bisporus. This compound has TLC and UVabsorption and characteristics indicating that it belongs to a class of pyrone antibiotics characterised from other T. harzianum biotypes. UV absorption spectra indicated this compound was not 6-pentyl-2H-pyran-one (6PAP), the volatile antifungal metabolite widely described in Th1. Furthermore, this compound was not produced by Th1 under any culture conditions. Mycelial growth of A. bisporus, Botrytis cinerea and Sclerotium cepivorum was inhibited in the presence of this compound through volatility , diffusion and direct application. This indicates that Th4 produces novel, volatile, antifungal metabolites in the presence of A. bisporus that are likely involved in green mould disease of mushroom crops.
Resumo:
An unusual postharvest spotting disease of the commercial mushroom, Agaricus bisporus, which was observed on a commercial mushroom farm in Ontario, was found to be caused by a novel pathovar of Pseudomonas tolaasii. Isolations from the discoloured lesions, on the mushroom pilei, revealed the presence of several different bacterial and fungal genera. The most frequently isolated genus being Pseudomonas bacteria. The most frequently isolated fungal genus was Penicillium. Of the bacteria and fungi assayed for pathogenicity to mushrooms, only Pseudomonas tolaasii was able to reproduce the postharvest spotting symptom. This symptom was typically reproduced 1 to 7 days postharvest, when mushroom pilei were inoculated with 101 to 105 cfu. Of the fungi tested for pathogenicity only a Penicillium sp. and Verticillium fungicola were shown to be pathogenic, however, neither produced the postharvest spotting symptom. The Pseudomonas tolaasii strain isolated from the postharvest lesions differed from a type culture (Pseudomonas tolaasii ATCC 33618) in the symptoms it produced on Agaricus bisporus pilei under the same conditions and at the same inoculum concentration. It was therefore designated a pathovar. This strain also differed from the type culture in its cellular protein profile. Neither the type culture, nor the mushroom pathogen was found to contain plasmid DNA. The presence of plasmid DNA is therefore not responsible for the difference in pathogenicity between the two strains.
Resumo:
Primary cilia are microtubule-rich hair-like extensions protruding from the surface of most post-mitotic cells. They act as sensory organelles that help interpret various environmental cues. Mutations in genes encoding proteins involved in ciliogenesis or protein transport to the primary cilia lead to a wide variety of diseases commonly referred to as ciliopathies,which include primary ciliary dyskinesia, situs invertus, hydrocephalus, kidney diseases, respiratory diseases, and retinal degenerations. In the retina, the photoreceptor cells have a highly specialized primary cilium called the outer segment (OS), which is essential for photosensation. Development of the photoreceptor OS shares key regulatory mechanisms with ciliogenesis in other cell types. Accumulating evidence indicates that mutations that affect OS development and/or protein transport to the OS generally lead to photoreceptor degeneration, which can be accompanied by a range of other clinical manifestations due to the dysfunction of primary cilia in different cell types. Here, we review the general mechanisms regulating ciliogenesis, and present different examples of mutations affecting OS ciliogenesis and protein transport that lead to photoreceptor degeneration. Overall, we conclude that the genetic and molecular evidence accumulated in recent years suggest a clear link between the development and function of the primary cilium and various clinical conditions. Future studies aimed at uncovering the cellular and molecular mechanisms implicated in ciliogenesis in a wide variety of animal models should greatly increase our understanding of the pathophysiology of many human diseases, including retinal degenerations.
Resumo:
The overall aim of the work presented was to evaluate soil health management with a specific focus on soil borne diseases of peas. For that purpose field experiments were carried out from 2009 until 2013 to assess crop performance and pathogen occurrence in the rotation winter pea-maize-winter wheat and if the application of composts can improve system performance. The winter peas were left untreated or inoculated with Phoma medicaginis, in the presence or absence of yard waste compost at rate of 5 t dry matter ha-1. A second application of compost was made to the winter wheat. Fusarium ssp. were isolated and identified from the roots of all three crops and the Ascochyta complex pathogens on peas. Bioassays were conducted under controlled conditions to assess susceptibility of two peas to Fusarium avenaceum, F. solani, P. medicaginis and Didymella pinodes and of nine plant species to F. avenaceum. Also, effects of compost applications and temperature on pea diseases were assessed. Application of composts overall stabilized crop performance but it did not lead to significant yield increases nor did it affect pathogen composition and occurrence. Phoma medicaginis was dominating the pathogen complex on peas. F. graminearum, F. culmorum, F. proliferatum, Microdochium nivale, F. crookwellense, F. sambucinum, F. oxysporum, F. avenaceum and F. equiseti were frequently isolated species from maize and winter wheat with no obvious influence of the pre-crop on the Fusarium species composition. The spring pea Santana was considerably more susceptible to the pathogens tested than the winter pea EFB33 in both sterile sand and non-sterilized field soil. F. avenaceum was the most aggressive pathogen, followed by P. medicaginis, D. pinodes, and F. solani. Aggressiveness of all pathogens was greatly reduced in non-sterile field soil. F. avenaceum caused severe symptoms on roots of all nine plant species tested. Especially susceptible were Trifolium repens, T. subterraneum, Brassica juncea and Sinapis alba in addition to peas. Reduction of growing temperatures from 19/16°C day/night to 16/12°C and 13/10°C did not affect the efficacy of compost. It reduced plant growth and slightly increased disease on EFB33 whereas the highest disease severity on Santana was observed at the highest temperature, 19/16°C. Application of 20% v/v of compost reduced disease on peas due to all four pathogens depending on pea variety, pathogen and growing media used. Suppression was also achieved with lower application rate of 3.5% v/v. Tests with γ sterilized compost suggest that the suppression of disease caused by Fusarium spp. is biological in origin, whereas chemical and physical properties of compost are playing an additional role in the suppression of disease caused by D. pinodes and P. medicaginis.