993 resultados para Lithium-oxygen battery


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Porous tin oxide nanotubes were obtained by vacuum infiltration of tin oxide nanoparticles into porous aluminum oxide membranes, followed by calcination. The porous tin oxide nanotube arrays so prepared were characterized by FE-SEM, TEM, HRTEM, and XRD. The nanotubes are open-ended, highly ordered with uniform cross-sections, diameters and wall thickness. The tin oxide nanotubes were evaluated as a substitute anode material for the lithium ion batteries. The tin oxide nanotube anode could be charged and discharged repeatedly, retaining a specific capacity of 525 mAh/g after 80 cycles. This capacity is significantly higher than the theoretical capacity of commercial graphite anode (372 mAh/g) and the cyclability is outstanding for a tin based electrode. The cyclability and capacities of the tin oxide nanotubes were also higher than their building blocks of solid tin oxide nanoparticles. A few factors accounting for the good cycling performance and high capacity of tin oxide nanotubes are suggested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A lithium-polymer battery based on an ionic liquid–polymer electrolyte (IL–PE) composite membrane operating at room temperature is described. Utilizing a polypyrrole coated LiV3O8 cathode material, the cell delivers >200 mAh g−1 with respect to the mass of the cathode material. Discharge capacity is slightly higher than those observed for this cathode material in standard aprotic electrolytes; it is thought that this is the result of a lower solubility of the LiV3O8 material in the IL–PE composite membrane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A high-energy efficient method is developed for the synthesis of LiFePO4@CNT core-shell nanowire structures. The method consists of two steps: liquid deposition approach to prepare FePO4@CNT core-shell nanowires and solvothermal lithiation to obtain the LiFePO4@CNT core-shell nanowires at a low temperature. The solution phase method can be easily scaled up for commercial application. The performance of the materials produced by this method is evaluated in Li ion batteries. The one-dimensional LiFePO4@CNT nanowires offer a stable and efficient backbone for electron transport. The LiFePO4@CNT core-shell nanowires exhibit a high capacity of 132.8 mAh g-1 at a rate of 0.2C, as well as high rate capability (64.4 mAh g-1 at 20C) for Li ion storage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A range of high-capacity Li-ion anode materials (conversion reactions with lithium) suffer from poor cycling stability and limited high-rate performance. These issues can be addressed through hybridization of multiple nanostructured components in an electrode. Using a Co3O4-Fe2O3/C system as an example, we demonstrate that the cycling stability and rate performance are improved in a hybrid electrode. The hybrid Co3O4-Fe2O3/C electrode exhibits long-term cycling stability (300 cycles) at a moderate current rate with a retained capacity of approximately 700 mAh g(-1). The reversible capacity of the Co3O4-Fe2O3/C electrode is still about 400 mAh g(-1) (above the theoretical capacity of graphite) at a high current rate of ca. 3 A g(-1), whereas Co3O4-Fe2O3, Fe2O3/C, and Co3O4/C electrodes (used as controls) are unable to operate as effectively under identical testing conditions. To understand the structure-function relationship in the hybrid electrode and the reasons for the enhanced cycling stability, we employed a combination of ex situ and in situ techniques. Our results indicate that the improvements in the hybrid electrode originate from the combination of sequential electrochemical activity of the transition metal oxides with an enhanced electronic conductivity provided by percolating carbon chains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interconnected microspheres of V2O5 composed of ultra-long nanobelts are synthesized in an environmental friendly way by adopting a conventional anodization process combined with annealing. The synthesis process is simple and low-cost because it does not require any additional chemicals or reagents. Commercial fish-water is used as an electrolyte medium to anodize vanadium foil for the first time. Electron microscopy investigation reveals that each belt consists of numerous nanofibers with free space between them. Therefore, this novel nanostructure demonstrates many outstanding features during electrochemical operation. This structure prevents self-aggregation of active materials and fully utilizes the advantage of active materials by maintaining a large effective contact area between active materials, conductive additives, and electrolyte, which is a key challenge for most nanomaterials. The electrodes exhibit promising electrochemical performance with a stable discharge capacity of 227 mAh·g–1 at 1C after 200 cycles. The rate capability of the electrode is outstanding, and the obtained capacity is as high as 278 at 0.5C, 259 at 1C, 240 at 2C, 206 at 5C, and 166 mAh·g–1 at 10C. Overall, this novel structure could be one of the most favorable nanostructures of vanadium oxide-based cathodes for Li-ion batteries. [Figure not available: see fulltext.]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A low cost electrophoretic deposition (EPD) process was successfully used for liquid metal thin film deposition with a high depositing rate of 0.6 µ/min. Furthermore, silicon nano-powder and liquid metal were then simultaneously deposited as the negative electrode of lithium-ion battery by a technology called co-EPD. The liquid metal was hoping to act as the matrix for silicon particles during lithium ion insertion and distraction. Half-cell testing was performed using as prepared co-EPD sample. An initial discharge capacity of 1500 mAh/g was reported for nano-silicon and galinstan electrode, although the capacity fading issue of these samples was also observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three-dimensional ordered mesoporous (3DOM) ZnCo2O4 materials have been synthesized via a hard template and used as bifunctional electrocatalysts for rechargeable Li-O2 batteries. The as-prepared ZnCo2O4 nanoparticles possess a high specific surface area of 127.2 m2 g-1 and a spinel crystalline structure. The Li-O2 battery utilizing 3DOM ZnCo2O4 shows a higher specific capacity of 6024 mAh g-1 than that with pure Ketjen black (KB). Moreover, the ZnCo2O4-based electrode enables much enhanced cyclability with a smaller discharge-recharge voltage gap than that of the carbon-only cathode. Such excellent catalytic performance of ZnCo2O4 could be associated with its larger surface area and 3D ordered mesoporous structure

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three-dimensional ordered mesoporous (3DOM) CuCo2O4 materials have been synthesized via a hard template and used as bifunctional electrocatalysts for rechargeable Li-O2 batteries. The characterization of the catalyst by X-ray diffractometry and transmission electron microscopy confirms the formation of a single-phase, 3-dimensional, ordered mesoporous CuCo2O4 structure. The as-prepared CuCo2O4 nanoparticles possess a high specific surface area of 97.1 m2 g- 1 and a spinel crystalline structure. Cyclic voltammetry demonstrates that mesoporous CuCo2O4 catalyst enhances the kinetics for either oxygen reduction reaction (ORR) or oxygen evolution reaction (OER). The Li-O2 battery utilizing 3DOM CuCo2O4 shows a higher specific capacity of 7456 mAh g- 1 than that with pure Ketjen black (KB). Moreover, the CuCo2O4-based electrode enables much enhanced cyclability with a 610 mV smaller discharge-recharge voltage gap than that of the carbon-only cathode at a current rate of 100 mA g- 1. Such excellent catalytic performance of CuCo2O4 could be associated with its larger surface area and 3D ordered mesoporous structure. The excellent electrochemical performances coupled with its facile and cost-effective way will render the 3D mesoporous CuCo2O4 nanostructures as attractive electrode materials for promising application in Li-O2 batteries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The work presented in the thesis is centered around two important types of cathode materials, the spinel structured LixMn204 (x =0.8to1.2) and the phospho -oIivine structured LiMP04 (M=Fe and Ni). The spinel system LixMn204, especially LiMn204 corresponding to x= 1 has been extensively investigated to understand its structural electrical and electrochemical properties and to analyse its suitability as a cathode material in rechargeable lithium batteries. However there is no reported work on the thermal and optical properties of this important cathode material. Thermal diffusivity is an important parameter as far as the operation of a rechargeable battery is concerned. In LixMn204, the electronic structure and phenomenon of Jahn-Teller distortion have already been established theoretically and experimentally. Part of the present work is an attempt to use the non-destructive technique (NDT) of photoacoustic spectroscopy to investigate the nature of the various electronic transitions and to unravel the mechanisms leading to the phenomenon of J.T distortion in LixMn204.The phospho-olivines LiMP04 (M=Fe, Ni, Mn, Co etc) are the newly identified, prospective cathode materials offering extremely high stability, quite high theoretical specific capacity, very good cycIability and long life. Inspite of all these advantages, most of the phospho - olivines especially LiFeP04 and LiNiP04 show poor electronic conductivity compared to LixMn204, leading to low rate capacity and energy density. In the present work attempts have been made to improve the electronic conductivity of LiFeP04 and LiNiP04 by adding different weight percentage MWNT .It is expected that the addition of MWNT will enhance the electronic conductivity of LiFeP04 and LiNiP04 with out causing any significant structural distortions, which is important in the working of the lithium ion battery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of processing history and morphology is of particular importance for lithium-ion electrolytes for achieving higher ionic conductivities. In this study, single ion conducting poly (4-lithium styrene sulfonic acid) was synthesized by neutralization reaction from polystyrene sulfonic acid, and the effect of morphology and processing method was studied by comparing pelletized, electrospun and gel samples. The PSSLi gels displayed best ionic conductivity, while the pelletized samples showed the worst ionic conductivity. Although electrospinning led to a free standing electrolyte, the lower amount of solvent phase led to lower ionic conductivity when compared to the PSSLi gel. The ionic conductivity at room temperature improved from 6.6 × 10−5 S/cm to 1.4 × 10−3 S/cm by optimizing the processing methodology and the lithium ion concentration. The results show that PSSLi based single ion conducting lithium (SICL) gels are a promising candidate for lithium ion battery application.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Despite negative press, the future of lithium-based battery chemistries appears positive.