914 resultados para Liquid-Solid Flow
Resumo:
On the basis of the Local Equilibrium Model (LEM), fine particles with large Richardson-Zaki exponent n show, under certain conditions during bed expansion and collapse, different dynamic behavior from particles with small n. For an expansion process there may be a concentration discontinuity propagating upward from the distributor, and, on the contrary, for a collapse process there may be a progressively broadening and upward-propagating continuous transition zone instead of discontinuity. The predictions of the bed height variation and the discontinuity trace have been validated experimentally. (c) 2007 Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
Resumo:
This paper describes the experimental and theoretical studies of gas-liquid bubbly flow in vertical upward pipeline carried out at Institute of Mechanics, Chinese Academy of Sciences. Bubbly flow in a vertical pipe with a 3 m long and 5 cm inner diameter plexiglass pipe was experimentally investigated, and studies carried out on the relationship between superficial velocities of the liquid and gas phases and pressure gradient is described. The developed drift-flux model applied to gas-liquid bubbly flow is presented, and the results are compared against the experimental data measured by ours in air/water vertical pipes.
Resumo:
This thesis presents experimental measurements of the rheological behavior of liquid-solid mixtures at moderate Reynolds (defined by the shear rate and particle diameter) and Stokes numbers, ranging from 3 ≤ Re ≤ 1.6 × 103 and 0.4 ≤ St ≤ 195. The experiments use a specifically designed Couette cylindrical rheometer that allows for probing the transition from transporting a pure liquid to transporting a dense suspension of particles. Measurements of the shear stress are presented for a wide range of particle concentration (10 to 60% in volume) and for particle to fluid density ratio between 1 and 1.05. The effective relative viscosity exhibits a strong dependence on the solid fraction for all density ratios tested. For density ratio of 1 the effective viscosity increases with Stokes number (St) for volume fractions (φ) lower than 40% and becomes constant for higher φ. When the particles are denser than the liquid, the effective viscosity shows a stronger dependance on St. An analysis of the particle resuspension for the case with a density ratio of 1.05 is presented and used to predict the local volume fraction where the shear stress measurements take place. When the local volume fraction is considered, the effective viscosity for settling and no settling particles is consistent, indicating that the effective viscosity is independent of differences in density between the solid and liquid phase. Shear stress measurements of pure fluids (no particles) were performed using the same rheometer, and a deviation from laminar behavior is observed for gap Reynolds numbers above 4× 103, indicating the presence of hydrodynamic instabilities associated with the rotation of the outer cylinder. The increase on the effective viscosity with Stokes numbers observed for mixtures with φ ≤ 30% appears to be affected by such hydrodynamic instabilities. The effective viscosity for the current experiments is considerably higher than the one reported in non-inertial suspensions.
Resumo:
To observe the axial growth behavior of InAs on GaAs nanowires, InAs was grown for different growth durations on GaAs nanowires using Au nanoparticles. Through transmission electron microscopy, we have observed the following evolution steps for the InAs growth. (1) In the initial stages of the InAs growth, InAs clusters into a wedge shape preferentially at an edge of the Au/GaAs interface by minimizing Au/InAs interfacial area; (2) with further growth of InAs, the Au particle moves sidewards and then downwards by preserving an interface with GaAs nanowire sidewalls. The lower interfacial energy of Au/GaAs than that of Au/In As is attributed to be the reason for such Au movement. This downward movement of the Au nanoparticle later terminates when the nanoparticle encounters InAs growing radially on the GaAs nanowire sidewalls, and with further supply of In and As vapor reactants, the Au nanoparticle assists the formation of InAs branches. These observations give some insights into vapor-liquid-solid growth and the formation of kinks in nanowire heterostructures. © 2008 Materials Research Society.
Resumo:
Silicon nanowires (SiNWs) were grown directly from n-(111) single-crystal silicon (c-Si) substrate based on a solid-liquid-solid mechanism, and Au film was used as a metallic catalyst. The room temperature photoluminescence properties of SiNWs were observed by an Xe lamp with an exciting wavelength of 350 nm. The results show that the SiNWs exhibit a strongly blue luminescent band in the wavelength range 400-480 nm at an emission peak position of 420 nm. The luminescent mechanism of SiNWs indicates that the blue luminescence is attributed to the oxygen-related defects, which are in SiOx amorphous oxide shells around the crystalline core of SiNWs.
Resumo:
We investigate the dewetting behavior of the bilayer of air/PS/PMMA/silanized Si wafer and find the two competing dewetting pathways in the dewetting process. The upper layer dewets on the lower layer (dewetting pathway 1, the liquid-liquid dewetting) and the two layers rupture on the solid substrate (dewetting pathway 2, the liquid-solid dewetting). To the two competing dewetting pathways, the process of forming holes and the process of hole growth, influence their competing relation. In the process of forming holes, the time of forming holes is a main factor that influences their competing relation. During the process of hole growth, the dewetting velocity is a main factor that influences their competing relation.
Resumo:
A reversibly tunable colloidal photonic crystal between two stop bands was realized by a liquid-solid phase transition of liquid infiltrated into the air voids of silica opals. The difference of the peak wavelengths of the two stop bands was dependent on the diameter of the silica opals and the difference of the refractive index of the filled solvent between the solid and liquid state. The reversibly tunable photonic crystals have good stability and reproducibility.
Resumo:
Superconductor mixed oxides were often used as catalysts at higher temperature in gas phase oxidations, and considered not suitable for lower temperature reactions in the liquid-solid phase; here the catalysis of YBa2Cu3O7+/-x and Y2BaCuO5+/-x in the phenol hydroxylation at lower temperature with H2O2 as oxygen donor was studied, and found that the superconductor YBa2Cu3O7+/-x, has no catalytic activity for phenol hydroxylation, but Y2BaCuO5+/-x does, even has better catalytic activity and stability than most previously reported ones. With the studies of catalysis of other simple metal oxides and perovskite-like mixed oxides, a radical substitution mechanism is proposed and the experimental facts are explained clearly, and draw a conclusion that the perovskite-like mixed oxides with (AO)(ABO(3)) and (AO)2(ABO(3)) structure have better catalytic activity than the simple perovskite oxides with (ABO(3))(3) structure alone, and (AO) structure unit is the key for the mixed oxides to have the phenol hydroxylation activity. No pollution of this process is very important for its further industrial application.
Resumo:
Superconductor mixed oxides are often used as catalysts at high temperature in gas-solid phase oxidations and considered not suitable for lower temperature reactions in the liquid-solid phase; here the catalysis of La2-xSrxCuO4+/-lambda (x = 0, 0.1, 0.7, 1) mixed oxides in phenol hydroxylation at lower temperatures are studied, and we find that the value of x has a significant effect on catalytic activity: the lower its value, the higher the catalytic activity; a mechanism is proposed to explain the experimental phenomena.
Resumo:
A slab optical waveguide (SOWG) has been used for study of adsorption of both methylene blue (MB) and new methylene blue (NMB) in liquid-solid interface. Adsorption characteristics of MB and NMB on both bare SOWG and silanized SOWG by octadecyltrichlorosilane (ODS) were compared. Effect of pH on adsorption on MB and NMB was investigated. Binding rate constant analysis showed that both MB and NMB on bare SOWG demonstrates larger association constants than those on ODS-SOWG. Interactions of NIB and NMB on bare SOWG and ODS-SOWG were analyzed by molecular mechanics calculation method. The binding energy change was in the following order: ENMB-bare > EMB-bare > ENMB-ODS > EMB-ODS. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
In this paper, the hydrodynamics and the pressure drop of liquid-liquid slug flow in round microcapillaries are presented. Two liquid-liquid flow systems are considered, viz. water-toluene and ethylene glycol/water-toluene. The slug lengths of the alternating continuous and dispersed phases were measured as a function of the slug velocity (0.03-0.5 m/s), the organic-to-aqueous flow ratio (0.1-4.0), and the microcapillary internal diameter (248 and 498 mu m). The pressure drop is modeled as the sum of two contributions: the frictional and the interface pressure drop. Two models are presented, viz, the stagnant film model and the moving film model. Both models account for the presence of a thin liquid film between the dispersed phase slug and the capillary wall. It is found that the film velocity is of negligible influence on the pressure drop. Therefore, the stagnant film model is adequate to accurately predict the liquid-liquid slug flow pressure drop. The influence of inertia and the consequent change of the slug cap curvature are accounted for by modifying Bretherton's curvature parameter in the interface pressure drop equation. The stagnant film model is in good agreement with experimental data with a mean relative error of less than 7%.
Resumo:
We show that, at high densities, fully variational solutions of solidlike types can be obtained from a density functional formalism originally designed for liquid 4He . Motivated by this finding, we propose an extension of the method that accurately describes the solid phase and the freezing transition of liquid 4He at zero temperature. The density profile of the interface between liquid and the (0001) surface of the 4He crystal is also investigated, and its surface energy evaluated. The interfacial tension is found to be in semiquantitative agreement with experiments and with other microscopic calculations. This opens the possibility to use unbiased density functional (DF) methods to study highly nonhomogeneous systems, like 4He interacting with strongly attractive impurities and/or substrates, or the nucleation of the solid phase in the metastable liquid.