985 resultados para Lipid nutrition larvae
Body length, dry mass, carbon, nitrogen, lipid, and protein of Euphausia superba, larvae, furcilia I
Resumo:
The present study aimed to investigate the relationships between macronutrient intake and serum lipid profile in adolescents from eight European cities participating in the HELENA (Healthy Lifestyle in Europe by Nutrition in Adolescence) cross-sectional study (2006–7), and to assess the role of body fat-related variables in these associations. Weight, height, waist circumference, skinfold thicknesses, total choles- terol, HDL-cholesterol (HDL-C), LDL-cholesterol, TAG, apoB and apoA1 were measured in 454 adolescents (44 % boys) aged 12·5–17·5 years. Macronutrient intake (g/4180 kJ per d (1000 kcal per d)) was assessed using two non-consecutive 24 h dietary recalls. Associations were evaluated by multi-level analysis and adjusted for sex, age, maternal education, centre, sum of four skinfolds, moderate-to-vigorous.
Resumo:
Ocean acidification (OA) threatens the existence of coral reefs by slowing the rate of calcium carbonate (CaCO3) production of framework-building corals thus reducing the amount of CaCO3 the reef can produce to counteract natural dissolution. Some evidence exists to suggest that elevated levels of dissolved inorganic nutrients can reduce the impact of OA on coral calcification. Here, we investigated the potential for enhanced energetic status of juvenile corals, achieved via heterotrophic feeding, to modulate the negative impact of OA on calcification. Larvae of the common Atlantic golf ball coral, Favia fragum, were collected and reared for 3 weeks under ambient (421 µatm) or significantly elevated (1,311 µatm) CO2 conditions. The metamorphosed, zooxanthellate spat were either fed brine shrimp (i.e., received nutrition from photosynthesis plus heterotrophy) or not fed (i.e., primarily autotrophic). Regardless of CO2 condition, the skeletons of fed corals exhibited accelerated development of septal cycles and were larger than those of unfed corals. At each CO2 level, fed corals accreted more CaCO3 than unfed corals, and fed corals reared under 1,311 µatm CO2 accreted as much CaCO3 as unfed corals reared under ambient CO2. However, feeding did not alter the sensitivity of calcification to increased CO2; Delta calcification/Delta Omega was comparable for fed and unfed corals. Our results suggest that calcification rates of nutritionally replete juvenile corals will decline as OA intensifies over the course of this century. Critically, however, such corals could maintain higher rates of skeletal growth and CaCO3 production under OA than those in nutritionally limited environments.
Resumo:
Background: In order to prevent chronic, non communicable disease, it is essential that lifestyle is modified to include a diet high in fiber. Aim: To assess the effect oat bran (OB) in conjunction with nutrition counseling (NC) have on lipid and glucose profile, anthropometric parameters, quality of diet, and ingestion of ultraprocessed foods (UPF) and additives in hypercholesterolemia sufferers. Method: This was a 90-day, double-blind, placebo-controlled, block-randomized trial undertaken on 132 men and women with LDL-c ≥ 130 mg/dL. The participants were sorted into two groups: OB Group (OBG) and Placebo Group (PLG), and were given NC and 40g of either OB or rice flour, respectively. Lipid and glucose profile were assessed, as were the anthropometric data, quality of diet (Diet Quality Index revised for the Brazilian population - DQI-R) and whether or not UPF or additives were consumed. Results: Both groups showed a significant decrease in anthropometric parameters and blood pressure, as well as a significant reduction in total and LDL cholesterol. There was also an improvement in DQI-R in both groups and a decrease in consumption of UPF. Blood sugar, HOMA-IR and QUICKI values were found to be significantly lower only in the OBG. Conclusion: Our findings in lipid profile and anthropometric parameters signify that NC has a beneficial effect, which is attributable to the improved quality of diet and reduced consumption of UPF. Daily consumption of 40 g of OB was found to be of additional benefit, in decreasing insulin-resistance parameters.
Resumo:
To determine if magnesium deficiency aggravates the effects of a high-fat diet in growing rats in terms of obesity, lipid profile and insulin resistance. The study population comprised 48 newly weaned male Wistar Hannover rats distributed into four groups according to diet, namely, control group (CT; n = 8), control diet provided ad libitum; pair-feeding control group (PF; n = 16), control diet but in the same controlled amount as animals that received high-fat diets; high-fat diet group (HF; n = 12), and magnesium-deficient high-fat diet group (HFMg(-); n = 12). The parameters investigated were adiposity index, lipid profile, magnesium status, insulin sensitivity and the phosphorylation of proteins involved in the insulin-signaling pathway, i.e. insulin receptor β-subunit, insulin receptor substrate 1 and protein kinase B. The HF and HFMg(-) groups were similar regarding gain in body mass, adiposity index and lipid profile, but were significantly different from the PF group. The HFMg(-) group exhibited alterations in magnesium homeostasis as revealed by the reduction in urinary and bone concentrations of the mineral. No inter-group differences were observed regarding glucose homeostasis. Protein phosphorylation in the insulin-signaling pathway was significantly reduced in the high-fat groups compared with the control groups, demonstrating that the intake of fat-rich diets increased insulin resistance, a syndrome that was aggravated by magnesium deficiency. Under the experimental conditions tested, the intake of a magnesium-deficient high-fat diet led to alterations in the insulin-signaling pathway and, consequently, increased insulin resistance.