863 resultados para Lipid Lowering
Resumo:
BACKGROUND AND OBJECTIVES: Data suggest that atorvastatin may be nephroprotective. This subanalysis of the Treating to New Targets study investigated how intensive lipid lowering with 80 mg of atorvastatin affects renal function when compared with 10 mg in patients with coronary heart disease. DESIGN, SETTING, PARTICIPANTS, ; MEASUREMENTS: A total of 10,001 patients with coronary heart disease and LDL cholesterol levels of <130 mg/dl were randomly assigned to double-blind therapy with 10 or 80 mg/d atorvastatin. Estimated GFR using the Modification of Diet in Renal Disease equation was compared at baseline and at the end of follow-up in 9656 participants with complete renal data. RESULTS: Mean estimated GFR at baseline was 65.6 +/- 11.4 ml/min per 1.73 m2 in the 10-mg group and 65.0 +/- 11.2 ml/min per 1.73 m2 in the 80-mg group. At the end of follow-up (median time to final creatinine measurement 59.5 months), mean change in estimated GFR showed an increase of 3.5 +/- 0.14 ml/min per 1.73 m2 with 10 mg and 5.2 +/- 0.14 ml/min per 1.73 m2 with 80 mg (P < 0.0001 for treatment difference). In the 80-mg arm, estimated GFR improved to > or = 60 ml/min per 1.73 m2 in significantly more patients and declined to < 60 ml/min per 1.73 m2 in significantly fewer patients than in the 10-mg arm. CONCLUSIONS: The expected 5-yr decline in renal function was not observed. Estimated GFR improved in both treatment groups but was significantly greater with 80 mg than with 10 mg, suggesting this benefit may be dosage related.
Resumo:
Dyslipidemia is one of the main modifiable cardiovascular risk factors. There is strong evidence for the efficacy of lipid-lowering drugs in secondary prevention, as well as in primary prevention for patients at high cardiovascular risk. In primary prevention, indication for lipid-lowering interventions should be based on an individual assessment of the cardiovascular risk and on the LDL cholesterol level, despite less strong evidence for the efficacy of drug-based interventions in low risk patients. Treatment consists of statins, as well as lifestyle modifications such as body weight control and increased physical exercise. The latter constitute the primary intervention in patients at low cardiovascular risk. Secondary dyslipidemias due to an underlying medical condition and familial dyslipidemias such as Familial Hypercholesterolemia and Familial Combined Hyperlipidemia should be identified and treated accordingly, taking into account that the risk scoring systems are not appropriate in these situations.
Resumo:
Background: The cytochrome P450 isoenzyme 3A5 (CYP3A5) has an important role on biotransformation of xenobiotics. CYP3A5 SNPs have been associated with variations on enzyme activity that can modify the metabolism of several drugs. Methods: In order to evaluate the influence of CYP3A5 variants on response to lowering-cholesterol drugs, 139 individuals with hypercholesterolemia were selected. After a wash-out period of 4 weeks, individuals were treated with atorvastatin (10 mg/day/4 weeks). Genomic DNA was extracted by a salting-out procedure. CYP3A5*3C, CYP3A5*6 and CYP3A5*1D were analyzed by PCR-RFLP and DNA sequencing. Results: >Frequencies of the CYP3A5*3C and CYP3A5*1D alleles were lower in individuals of African descent (*3C: 47.8% and *1D: 55.2%) than in non-Africans (*3C: 84.9% and *1D 84.8%, p<0.01). Non-Africans carrying *3A allele (*3C and *1D combined alleles) had lower total and LDL-cholesterol response to atorvastatin than non-*3A allele carriers (p<0.05). Conclusion: CYP3A5*3A allele is associated with reduced cholesterol-lowering response to atorvastatin in non-African individuals. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
PURPOSE: Many guidelines advocate measurement of total or low density lipoprotein cholesterol (LDL), high density lipoprotein cholesterol (HDL), and triglycerides (TG) to determine treatment recommendations for preventing coronary heart disease (CHD) and cardiovascular disease (CVD). This analysis is a comparison of lipid variables as predictors of cardiovascular disease. METHODS: Hazard ratios for coronary and cardiovascular deaths by fourths of total cholesterol (TC), LDL, HDL, TG, non-HDL, TC/HDL, and TG/HDL values, and for a one standard deviation change in these variables, were derived in an individual participant data meta-analysis of 32 cohort studies conducted in the Asia-Pacific region. The predictive value of each lipid variable was assessed using the likelihood ratio statistic. RESULTS: Adjusting for confounders and regression dilution, each lipid variable had a positive (negative for HDL) log-linear association with fatal CHD and CVD. Individuals in the highest fourth of each lipid variable had approximately twice the risk of CHD compared with those with lowest levels. TG and HDL were each better predictors of CHD and CVD risk compared with TC alone, with test statistics similar to TC/HDL and TG/HDL ratios. Calculated LDL was a relatively poor predictor. CONCLUSIONS: While LDL reduction remains the main target of intervention for lipid-lowering, these data support the potential use of TG or lipid ratios for CHD risk prediction. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Background Homozygous familial hypercholesterolaemia is a rare genetic disorder in which both LDL-receptor alleles are defective, resulting in very high concentrations of LDL cholesterol in plasma and premature coronary artery disease. This study investigated whether an antisense inhibitor of apolipoprotein B synthesis, mipomersen, is effective and safe as an adjunctive agent to lower LDL cholesterol concentrations in patients with this disease. Methods This randomised, double-blind, placebo-controlled, phase 3 study was undertaken in nine lipid clinics in seven countries. Patients aged 12 years and older with clinical diagnosis or genetic confirmation of homozygous familial hypercholesterolaemia, who were already receiving the maximum tolerated dose of a lipid-lowering drug, were randomly assigned to mipomersen 200 mg subcutaneously every week or placebo for 26 weeks. Randomisation was computer generated and stratified by weight (<50 kg vs >= 50 kg) in a centralised blocked randomisation, implemented with a computerised interactive voice response system. All clinical, medical, and pharmacy personnel, and patients were masked to treatment allocation. The primary endpoint was percentage change in LDL cholesterol concentration from baseline. Analysis was by intention to treat. This trial is registered with ClinicalTrials.gov, number NCT00607373. Findings 34 patients were assigned to mipomersen and 17 to placebo; data for all patients were analysed. 45 patients completed the 26-week treatment period (28 mipomersen, 17 placebo). Mean concentrations of LDL cholesterol at baseline were 11.4 mmol/L (SD 3.6) in the mipomersen group and 10.4 mmol/L (3.7) in the placebo group. The mean percentage change in LDL cholesterol concentration was significantly greater with mipomersen (-24.7%, 95% CI 31.6 to 17.7) than with placebo (-3.3%, 12.1 to 5.5; p=0.0003). The most common adverse events were injection-site reactions (26 [76%] patients in mipomersen group vs four [24%] in placebo group). Four (12%) patients in the mipomersen group but none in the placebo group had increases in concentrations of alanine aminotransferase of three times or more the upper limit of normal. Interpretation Inhibition of apolipoprotein B synthesis by mipomersen represents a novel, effective therapy to reduce LDL cholesterol concentrations in patients with homozygous familial hypercholesterolaemia who are already receiving lipid-lowering drugs, including high-dose statins.
Resumo:
Background Differences between women and men have been documented for both diagnostic testing and treatment in cardiology. This analysis evaluates whether low-density lipoprotein cholesterol (LDL-C) success rates according to current guidelines and high-density lipoprotein cholesterol (HDL-C) levels differ by gender in the L-TAP 2 population. Methods Patients aged >= 20 years with dyslipidemia on stable lipid-lowering therapy were assessed in 9 countries between September 2006 and April 2007. Low-density lipoprotein cholesterol goal attainment by cardiovascular risk level and region and determinants of low HDL-C were compared between genders. Results Of 9,955 patients (45.3% women) evaluated, women had a significantly lower overall LDL-C success rate than men (71.5% vs 73.7%, P = .014), due entirely to the difference in the high-risk/coronary heart disease (CHD) group (LDL-C goal <100 mg/dL, 62.6% vs 70.6%, P < .0001) Among CHD patients with >= 2 additional risk factors, only 26.7% of women and 31.5% of men (P = .021) attained the optional LDL-C goal of <70 mg/dL. High-density lipoprotein cholesterol was <50 mg/dL in 32.2% of women and <40 mg/dL in 26.8% of men (P < .0001), including 38.2% of women and 29.8% of men in the high risk/CHD group (P < .0001). Predictors of low HDL-C in women included diabetes, smoking, waist circumference, and hypertension. Conclusions Cholesterol treatment has, improved substantially since the original L-TAP a decade ago, when only 39% of women attained their LDL-C goal. However, high-risk women are undertreated compared to men, and a substantial opportunity remains to reduce their cardiovascular risk. (Am Heart J 2009; 158:860-6.)
Resumo:
Background-Information about physicians` adherence to cholesterol management guidelines remains scant. The present survey updates our knowledge of lipid management worldwide. Methods and Results-Lipid levels were determined at enrollment in dyslipidemic adult patients on stable lipid-lowering therapy in 9 countries. The primary end point was the success rate, defined as the proportion of patients achieving appropriate low-density lipoprotein cholesterol (LDL-C) goals for their given risk. The mean age of the 9955 evaluable patients was 62 +/- 12 years; 54% were male. Coronary disease and diabetes mellitus had been diagnosed in 30% and 31%, respectively, and 14% were current smokers. Current treatment consisted of a statin in 75%. The proportion of patients achieving LDL-C goals according to relevant national guidelines ranged from 47% to 84% across countries. In low-, moderate-, and high-risk groups, mean LDL-C was 119, 109, and 91 mg/dL and mean high-density lipoprotein cholesterol was 62, 49, and 50 mg/dL, respectively. The success rate for LDL-C goal achievement was 86% in low-, 74% in moderate-, and 67% in high-risk patients (73% overall). However, among coronary heart disease patients with >= 2 risk factors, only 30% attained the optional LDL-C goal of < 70 mg/dL. In the entire cohort, high-density lipoprotein cholesterol was < 40 mg/dL in 19%, 40 to 60 mg/dL in 55%, and > 60 mg/dL in 26% of patients. Conclusions-Although there is room for improvement, particularly in very-high-risk patients, these results indicate that lipid-lowering therapy is being applied much more successfully than it was a decade ago. (Circulation. 2009; 120: 28-34.)
Resumo:
Statins have been the mainstay of lipid-lowering therapy since their introduction. However, as lower LDL cholesterol targets are sought, adjunct therapies are becoming increasingly important. Few patients reach new targets with statin monotherapy. We propose that the cholestanol: cholesterol ratio can be used to guide lipid-lowering therapy and result in greater numbers of patients reaching target LDL cholesterol. By determining whether a patient is mainly a synthesizer or absorber of cholesterol, customized regimens can be used and are expected to improve patient outcomes and minimize costs of treatment. (c) 2005 Elsevier Ireland Ltd. All rights reserved.