938 resultados para Linux (Operating system) -- TFC
Resumo:
Tässä diplomityössä käsitellään eri näkökulmia ohjelmistojen uudelleenkäyttöön sekä esitellään perustiedot langattomiin laitteisiin käytettävästä Symbian-käyttöjärjestelmästä ja langattomasta Bluetooth-teknologiasta. Työn käytännön osuudessa suunniteltiin ja toteutettiin uudelleenkäytettävä Bluetooth-ohjelmistokomponentti Symbiankäyttöjärjestelmälle. Ohjelmistojen uudelleenkäytön edut ovat erittäin selkeitä. Uudelleenkäytettävät ohjelmistokomponentit parantavat ohjelmiston laatua ja suorituskykyä. Ohjelmistotuotteiden tuotekehityssykliä voidaan lyhentää merkittävästi ja kehitystyön kokonaiskustannuksia voidaan alentaa tehokkaalla uudelleenkäyttöohjelmalla. Kuitenkin uudelleenkäytöllä on myös esteitä, esimerkkeinä näistä ovat mm. resurssien puute, koulutus sekä uudelleenkäytön vastaiset asenteet. Bluetooth-teknologia on kypsynyt viimeisen kahden vuoden aikana, kun markkinoille on tullut yhä enemmän Bluetooth-laitteita ja niitä käyttäviä sovelluksia. Kehitetty komponentti tarjoaa perustoiminnallisuudet Bluetooth-yhteyksien muodostamiselle ja datan siirtämiselle laitteiden välillä.
Resumo:
Työssä tutkitaan, kuinka Symbian käyttöjärjestelmälle voidaan tehdä siirrettäviä ohjelmia. Työssä käydään läpi menetelmiä, jotka helpottavat ohjelmistojen siirrettävyyttä uudelle alustalle. Uuteen älypuhelimeen voi tulla monia uusia komponentteja. Laite voi muuttua piiritasolla, käyttöjärjestelmästä voi tulla uusi versio sekä siirrettävästä ohjelmasta voi tulla uusi versio. Kaikki nämä vaikuttavat ohjelman siirrettävyyteen. Työssä tehtiin Java-rajapinnan siirto uudelle alustalle. Prosessin aikana löydettiin tärkeitä tekijöitä, jotka vaikuttavat ohjelmiston siirrettävyyteen. Siirrettävyys sinänsä pitäisi ottaa huomioon ohjelmistoprosessin jokaisessa vaiheessa. Älypuhelimista tulee jatkuvasti uusia versioita. Tämä tekee ohjelmien siirrettävyydestä hyvin tärkeän tekijän ohjelmistojen suunnittelussa. Hyvin suunniteltu ohjelma on helpompi ylläpitää, päivättää ja siirtää myöhemmin.
Resumo:
The development of High-Integrity Real-Time Systems has a high footprint in terms of human, material and schedule costs. Factoring functional, reusable logic in the application favors incremental development and contains costs. Yet, achieving incrementality in the timing behavior is a much harder problem. Complex features at all levels of the execution stack, aimed to boost average-case performance, exhibit timing behavior highly dependent on execution history, which wrecks time composability and incrementaility with it. Our goal here is to restitute time composability to the execution stack, working bottom up across it. We first characterize time composability without making assumptions on the system architecture or the software deployment to it. Later, we focus on the role played by the real-time operating system in our pursuit. Initially we consider single-core processors and, becoming less permissive on the admissible hardware features, we devise solutions that restore a convincing degree of time composability. To show what can be done for real, we developed TiCOS, an ARINC-compliant kernel, and re-designed ORK+, a kernel for Ada Ravenscar runtimes. In that work, we added support for limited-preemption to ORK+, an absolute premiere in the landscape of real-word kernels. Our implementation allows resource sharing to co-exist with limited-preemptive scheduling, which extends state of the art. We then turn our attention to multicore architectures, first considering partitioned systems, for which we achieve results close to those obtained for single-core processors. Subsequently, we shy away from the over-provision of those systems and consider less restrictive uses of homogeneous multiprocessors, where the scheduling algorithm is key to high schedulable utilization. To that end we single out RUN, a promising baseline, and extend it to SPRINT, which supports sporadic task sets, hence matches real-world industrial needs better. To corroborate our results we present findings from real-world case studies from avionic industry.
Resumo:
The purpose of this document is to create a modest integration guide for embedding a Linux Operating System on ZedBoard development platform, based on Xilinx’s Zynq-7000 All Programmable System on Chip which contains a dual core ARM Cortex-A9 and a 7 Series FPGA Artix-7. The integration process has been structured in four chapters according to the logic generation of the different parts that compose the embedded system. With the intention of automating the generation process of a complete Linux distribution specific for ZedBoard platform, BuildRoot development platform it is used. Once the embedding process finished, it was decided to add to the system the required functionalities for adding support for IEEE1588 Standard for Precision Clock Synchronization Protocol for Networked Measurement and Control Systems, through a user space Linux program which implements the protocol. That PTP user space implementation program has been cross-compiled, executed on target and tested for evaluating the functionalities added. RESUMEN El propósito de este documento es crear una modesta guía de integración de un sistema operativo Linux para la plataforma de desarrollo ZedBoard, basada en un System on Chip del fabricante Xilinx llamado Zynq-7000. Este System on Chip está compuesto por un procesador de doble núcleo ARM Cortex-A9 y una FPGA de la Serie 7 equiparable a una Artix-7. El proceso de integración se ha estructurado en cuatro grandes capítulos que se rigen según el orden lógico de generación de las distintas partes por las que el sistema empotrado está compuesto. Con el ánimo de automatizar el proceso de creación de una distribución de Linux específica para la plataforma ZedBoard, se ha utilizado la plataforma de desarrollo BuildRoot. Una vez terminado el proceso de integración del sistema empotrado, se procedió a dar dotar al sistema de las funcionalidades necesarias para dar soporte al estándar de sincronización de relojes en redes de área local, PTP IEEE1588, a través de una implementación del mismo en un programa de lado de usuario el cual ha sido compilado, ejecutado y testeado para evaluar el correcto funcionamiento de las funcionalidades añadidas.
Resumo:
EPICS (Experimental Physics and Industrial Control System) lies in a set of software tools and applications which provide a software infrastructure for building distributed data acquisition and control systems. Currently there is an increase in use of such systems in large Physics experiments like ITER, ESS, and FREIA. In these experiments, advanced data acquisition systems using FPGA-based technology like FlexRIO are more frequently been used. The particular case of ITER (International Thermonuclear Experimental Reactor), the instrumentation and control system is supported by CCS (CODAC Core System), based on RHEL (Red Hat Enterprise Linux) operating system, and by the plant design specifications in which every CCS element is defined either hardware, firmware or software. In this degree final project the methodology proposed in Implementation of Intelligent Data Acquisition Systems for Fusion Experiments using EPICS and FlexRIO Technology Sanz et al. [1] is used. The final objective is to provide a document describing the fulfilled process and the source code of the data acquisition system accomplished. The use of the proposed methodology leads to have two diferent stages. The first one consists of the hardware modelling with graphic design tools like LabVIEWFPGA which later will be implemented in the FlexRIO device. In the next stage the design cycle is completed creating an EPICS controller that manages the device using a generic device support layer named NDS (Nominal Device Support). This layer integrates the data acquisition system developed into CCS (Control, data access and communication Core System) as an EPICS interface to the system. The use of FlexRIO technology drives the use of LabVIEW and LabVIEW FPGA respectively. RESUMEN. EPICS (Experimental Physics and Industrial Control System) es un conjunto de herramientas software utilizadas para el desarrollo e implementación de sistemas de adquisición de datos y control distribuidos. Cada vez es más utilizado para entornos de experimentación física a gran escala como ITER, ESS y FREIA entre otros. En estos experimentos se están empezando a utilizar sistemas de adquisición de datos avanzados que usan tecnología basada en FPGA como FlexRIO. En el caso particular de ITER, el sistema de instrumentación y control adoptado se basa en el uso de la herramienta CCS (CODAC Core System) basado en el sistema operativo RHEL (Red Hat) y en las especificaciones del diseño del sistema de planta, en la cual define todos los elementos integrantes del CCS, tanto software como firmware y hardware. En este proyecto utiliza la metodología propuesta para la implementación de sistemas de adquisición de datos inteligente basada en EPICS y FlexRIO. Se desea generar una serie de ejemplos que cubran dicho ciclo de diseño completo y que serían propuestos como casos de uso de dichas tecnologías. Se proporcionará un documento en el que se describa el trabajo realizado así como el código fuente del sistema de adquisición. La metodología adoptada consta de dos etapas diferenciadas. En la primera de ellas se modela el hardware y se sintetiza en el dispositivo FlexRIO utilizando LabVIEW FPGA. Posteriormente se completa el ciclo de diseño creando un controlador EPICS que maneja cada dispositivo creado utilizando una capa software genérica de manejo de dispositivos que se denomina NDS (Nominal Device Support). Esta capa integra la solución en CCS realizando la interfaz con la capa EPICS del sistema. El uso de la tecnología FlexRIO conlleva el uso del lenguaje de programación y descripción hardware LabVIEW y LabVIEW FPGA respectivamente.
Resumo:
This project is divided into two main parts: The first part shows the integration of an Embedded Linux operating system on a development hardware platform named Zedboard. This platform contains a Zynq-7000 System on Chip (Soc) which is composed by two dual core ARM Cortex-A9 processors and a FPGA Artix-7. The Embedded Linux is built with Linuxlink, a Timesys tool. Meanwhile, the platform hardware configuration is done with Xilinx Vivado. The system is loaded with an SD card which requires to have every files needed for the booting process and for the operation. Some of these files are generated with Xilinx SDK software. The second part starts up from the system already built to integrate a peripheral in the Zynq-7000 FPGA. Also the drivers for controlling the peripheral from the operating system are developed. Finally, a user space program is created to test both of them. RESUMEN. Este proyecto consta de dos partes: La primera muestra la integración de un sistema operativo Linux embebido en una plataforma de desarrollo hardware llamada Zedboard. Esta plataforma utiliza un System on Chip (SoC) Zynq-7000 que está formado por dos procesadores ARM Cortex-A9 de doble núcleo y una FPGA Artix-7. El Linux embebido se construye utilizando la herramienta Linuxlink de Timesys, mientras que el hardware de la plataforma de desarrollo se configura con Vivado de Xilinx. El sistema se carga en una tarjeta SD que debe tener todos los archivos necesarios para completar el arranque y hacer funcionar el sistema. Algunos de esos archivos se generan con la herramienta SDK de Xilinx. En la segunda parte se utiliza el sistema construido para integrar un periférico en la FPGA del Zynq-7000, haciendo uso de Vivado, y se desarrollan los drivers necesarios para utilizarlo mediante el sistema operativo. Para probar esta última parte se desarrolla un programa de espacio de usuario.
Resumo:
Federal Highway Administration, Washington, D.C.
Resumo:
Thesis (M. S.)--University of Illinois at Urbana-Champaign.
Resumo:
"Supported in part by National Science Foundation under Grant No. NSF-GP-7634."
Resumo:
Thesis--Illinois.
Resumo:
Supported in part by NASA Project NSG 1471 and NSF MCS 77-09128."
Resumo:
Includes bibliographical references.
Resumo:
Communication and portability are the two main problems facing the user. An operating system, called PORTOS, was developed to solve these problems for users on dedicated microcomputer systems. Firstly, an interface language was defined, according to the anticipated requirements and behaviour of its potential users. Secondly, the PORTOS operating system was developed as a processor for this language. The system is currently running on two minicomputers of highly different architectures. PORTOS achieves its portability through its high-level design, and implementation in CORAL66. The interface language consists of a set of user cotnmands and system responses. Although only a subset has been implemented, owing to time and manpower constraints, promising results were achieved regarding the usability of the language, and its portability.
Resumo:
Trying to explain to a robot what to do is a difficult undertaking, and only specific types of people have been able to do so far, such as programmers or operators who have learned how to use controllers to communicate with a robot. My internship's goal was to create and develop a framework that would make that easier. The system uses deep learning techniques to recognize a set of hand gestures, both static and dynamic. Then, based on the gesture, it sends a command to a robot. To be as generic as feasible, the communication is implemented using Robot Operating System (ROS). Furthermore, users can add new recognizable gestures and link them to new robot actions; a finite state automaton enforces the users' input verification and correct action sequence. Finally, the users can create and utilize a macro to describe a sequence of actions performable by a robot.