947 resultados para Linear growth
Resumo:
A thermostimulated sol-gel transition in a system prepared by mixing a ZrOCl(2) acidified solution to a hot H(2)SO(4) aqueous solution was studied by dynamic theological measurements and quasi-elastic light scattering. The effect of temperature and of molar ratio R(S) = [Zr]/[SO(4)] on the gelation kinetics was analyzed using the mass fractal aggregate growth model. This study shows that the linear growth of aggregates occurs at the early period of transformation, while bidimensional growth occurs at the advanced stage. The bidimensional growth can be shifted toward monodimensional growth by decreasing the aggregation rate by controlling the temperature and/or molar ratio R(S). EXAFS and Raman results gave evidence that the linear chain growth is supported by covalent sulfate bonding between primary building blocks. At the advanced stage of aggregation, the assembly of linear chains through hydrogen bonding gave rise to the growth of bidimensional particles.
Resumo:
The growth patterns of weight from birth through the first twelve months of life among rural Taiwanese infants were investigated with the following objectives: (i) compare each of the parameters of the Count model estimated for infants who were nutritionally at risk with those for a reference population from the United States; and (ii) within the Taiwanese infants, account for the variance in the growth patterns in the first and second six months of life on the basis of selected ecological factors.^ The significance between group differences were observed in the patterns of the weight growth in both linear growth and in the timing and the direction of velocity changes. A significant decline in growth velocity was observed among Taiwanese infants at about the fourth month of life. The decline is in keeping with a recent proposal made by J. C. Waterlow regarding the timing of change in growth velocity among nutritionally at risk populations in developing countries. The growth course of a nutritionally at risk infant during the first three months is apparently protected by the nurturance of the mother and innate biological properties of the infant.^ A highly significant portion of the growth variance in the second six months of life was accounted for by exogenous factors and biological factors related to the infant. Conversely, none of the growth variance in the first six months of life was accounted for by predictor variables. The most potent determinant of growth in the second six months of life was seasonality which represents a multiple environmental event.^ The model parameters estimated from the Count model represent different aspect of physical growth; yet the correlation coefficients between parameters b and c are high (r > .80). Clearly, the biological interpretation of the model parameters requires analysis of the whole function in the specific context of a given age period. ^
Resumo:
The status of silicon sheet development for photovoltaic applications is critically reviewed. Silicon sheet growth processes are classified according to their linear growth rates. The "fast" growth processes, which include edge-defined film-fed growth, silicon on ceramic, dendritic-web growth, and ribbon-to-ribbon growth, are comparatively ranked subject to criteria involving growth stability, sheet productivity, impurity effects, crystallinity, and solar cell results. The status of more rapid silicon ribbon growth techniques, such as horizontal ribbon growth and melt quenching, is also reviewed. The emphasis of the discussions is on examining the viability of these sheet materials as solar cell substrates for low-cost silicon photovoltaic systems.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Height is a complex physical trait that displays strong heritability. Adult height is related to length of the long bones, which is determined by growth at the epiphyseal growth plate. Longitudinal bone growth occurs via the process of endochondral ossification, where bone forms over the differentiating cartilage template at the growth plate. Estrogen plays a major role in regulating longitudinal bone growth and is responsible for inducing the pubertal growth spurt and fusion of the epiphyseal growth plate. However, the mechanism by which estrogen promotes epiphyseal fusion is poorly understood. It has been hypothesised that estrogen functions to regulate growth plate fusion by stimulating chondrocyte apoptosis, angiogenesis and bone cell invasion in the growth plate. Another theory has suggested that estrogen exposure exhausts the proliferative capacity of growth plate chondrocytes, which accelerates the process of chondrocyte senescence, leading to growth plate fusion. The overall objective of this study was to gain a greater understanding of the molecular mechanisms behind estrogen-mediated growth and height attainment by examining gene regulation in chondrocytes and the role of some of these genes in normal height inheritance. With the heritability of height so well established, the initial hypothesis was that genetic variation in candidate genes associated with longitudinal bone growth would be involved in normal adult height variation. The height-related genes FGFR3, CBFA1, ER and CBFA1 were screened for novel polymorphisms using denaturing HPLC and RFLP analysis. In total, 24 polymorphisms were identified. Two SNPs in ER (rs3757323 C>T and rs1801132 G>C) were strongly associated with adult male height and displayed an 8 cm and 9 cm height difference between homozygous genotypes, respectively. The TC haplotype of these SNPs was associated with a 6 cm decrease in height and remarkably, no homozygous carriers of the TC haplotype were identified in tall subjects. No significant associations with height were found for polymorphisms in the FGFR3, CBFA1 or VDR genes. In the epiphyseal growth plate, chondrocyte proliferation, matrix synthesis and chondrocyte hypertrophy are all major contributors to long bone growth. As estrogen plays such a significant role in both growth and final height attainment, another hypothesis of this study was that estrogen exerted its effects in the growth plate by influencing chondrocyte proliferation and mediating the expression of chondrocyte marker genes. The examination of genes regulated by estrogen in chondrocyte-like cells aimed to identify potential regulators of growth plate fusion, which may further elucidate mechanisms involved in the cessation of linear growth. While estrogen did not dramatically alter the proliferation of the SW1353 cell line, gene expression experiments identified several estrogen regulated genes. Sixteen chondrocyte marker genes were examined in response to estrogen concentrations ranging from 10-12 M to 10-8 M over varying time points. Of the genes analysed, IHH, FGFR3, collagen II and collagen X were not readily detectable and PTHrP, GHR, ER, BMP6, SOX9 and TGF1 mRNAs showed no significant response to estrogen treatments. However, the expression of MMP13, CBFA1, BCL-2 and BAX genes were significantly decreased. Interestingly, the majority of estrogen regulated genes in SW1353 cells are expressed in the hypertrophic zone of the growth plate. Estrogen is also known to regulate systemic GH secretion and local GH action. At the molecular level, estrogen functions to inhibit GH action by negatively regulating GH signalling. GH treated SW1353 cells displayed increases in MMP9 mRNA expression (4.4-fold) and MMP13 mRNA expression (64-fold) in SW1353 cells. Increases were also detected in their respective proteins. Treatment with AG490, an established JAK2 inhibitor, blocked the GH mediated stimulation of both MMP9 and MMP13 mRNA expression. The application of estrogen and GH to SW1353 cells attenuated GH-stimulated MMP13 levels, but did not affect MMP9 levels. Investigation of GH signalling revealed that SW1353 cells have high levels of activated JAK2 and exposure to GH, estrogen, AG490 and other signalling inhibitors did not affect JAK2 phosphorylation. Interestingly, AG490 treatment dramatically decreased ERK2 signalling, although GH did stimulate ERK2 phosphorylation above control levels. AG490 also decreased CBFA1 expression, a transcription factor known to activate MMP9 and MMP13. Finally, GH and estrogen treatment increased expression of SOCS3 mRNA, suggesting that SOCS3 may regulate JAK/STAT signalling in SW1353 cells. The modulation of GH-mediated MMP expression by estrogen in SW1353 cells represents a potentially novel mechanism by which estrogen may regulate longitudinal bone growth. However, further investigation is required in order to elucidate the precise mechanisms behind estrogen and GH regulation of MMP13 expression in SW1353 cells. This study has provided additional evidence that estrogen and the ER gene are major factors in the regulation of growth and the determination of adult height. Newly identified polymorphisms in the ER gene not only contribute to our understanding of the genetic basis of human height, but may also be useful in association studies examining other complex traits. This study also identified several estrogen regulated genes and indicated that estrogen modifies the expression of genes which are primarily expressed in the hypertrophic region of the epiphyseal growth plate. Furthermore, synergistic studies incorporating GH and estrogen have revealed the ability of estrogen to attenuate the effects of GH on MMP13 expression, revealing potential pathways by which estrogen may modulate growth plate fusion, longitudinal bone growth and even arthritis.
Resumo:
The growth and differentiation of mesenchymal stem cells is controlled by various growth factors, the activities of which can be modulated by heparan sulfates. We have previously underscored the necessity of sulfated glycosaminoglycans for the FGF-2-stimulated differentiation of osteoprogenitor cells. Here we show that exogenous application of heparan sulfate to cultures of primary rat MSCs stimulates their proliferation leading to increased expression of osteogenic markers and enhanced bone nodule formation. FGF-2 can also increase the proliferation and osteogenic differentiation of rMSCs when applied exogenously during their linear growth. However, as opposed to exogenous HS, the continuous use of FGF-2 during in vitro differentiation completely blocked rMSC mineralization. Furthermore, we show that the effects of both FGF-2 and HS are mediated through FGF receptor 1 (FGFR1) and that inhibition of signaling through this receptor arrests cell growth resulting in the cells being unable to reach the critical density necessary to induce differentiation. Interestingly, blocking FGFR1 signaling in post-confluent osteogenic cultures significantly increased calcium deposition. Taken together our data clearly suggests that FGFR1 signaling plays an important role during osteogenic differentiation, firstly by stimulating cell growth that is closely followed by an inhibitory affect once the cells have reached confluence. It also underlines the importance of HS as a co-receptor for the signaling of endogenous FGF-2 and suggests that purified glycosaminoglycans may be attractive alternatives to growth factors for improved ex vivo growth and differentiation of MSCs.
Resumo:
Data on seasonal population abundance of Bemisia tabaci biotype B (silverleaf whitefly (SLW)) in Australian cotton fields collected over four consecutive growing seasons (2002/2003-2005/2006) were used to develop and validate a multiple-threshold-based management and sampling plan. Non-linear growth trajectories estimated from the field sampling data were used as benchmarks to classify adult SLW field populations into six density-based management zones with associated control recommendations in the context of peak flowering and open boll crop growth stages. Control options based on application of insect growth regulators (IGRs) are recommended for high-density populations (>2 adults/leaf) whereas conventional (non-IGR) products are recommended for the control of low to moderate population densities. A computerised re-sampling program was used to develop and test a binomial sampling plan. Binomial models with thresholds of T=1, 2 and 3 adults/leaf were tested using the field abundance data. A binomial plan based on a tally threshold of T=2 adults/leaf and a minimum sample of 20 leaves at nodes 3, 4 or 5 below the terminal is recommended as the most parsimonious and practical sampling protocol for Australian cotton fields. A decision support guide with management zone boundaries expressed as binomial counts and control options appropriate for various SLW density situations is presented. Appropriate use of chemical insecticides and tactics for successful field control of whiteflies are discussed.
Resumo:
The cybernetic modeling framework provides an interesting approach to model the regulatory phenomena occurring in microorganisms. In the present work, we adopt a constraints based approach to analyze the nonlinear behavior of the extended equations of the cybernetic model. We first show that the cybernetic model exhibits linear growth behavior under the constraint of no resource allocation for the induction of the key enzyme. We then quantify the maximum achievable specific growth rate of microorganisms on mixtures of substitutable substrates under various kinds of regulation and show its use in gaining an understanding of the regulatory strategies of microorganisms. Finally, we show that Saccharomyces cerevisiae exhibits suboptimal dynamic growth with a long diauxic lag phase when growing on a mixture of glucose and galactose and discuss on its potential to achieve optimal growth with a significantly reduced diauxic lag period. The analysis carried out in the present study illustrates the utility of adopting a constraints based approach to understand the dynamic growth strategies of microorganisms. (C) 2015 Elsevier Ireland Ltd. All rights reserved.
Resumo:
This work is concerned with the derivation of optimal scaling laws, in the sense of matching lower and upper bounds on the energy, for a solid undergoing ductile fracture. The specific problem considered concerns a material sample in the form of an infinite slab of finite thickness subjected to prescribed opening displacements on its two surfaces. The solid is assumed to obey deformation-theory of plasticity and, in order to further simplify the analysis, we assume isotropic rigid-plastic deformations with zero plastic spin. When hardening exponents are given values consistent with observation, the energy is found to exhibit sublinear growth. We regularize the energy through the addition of nonlocal energy terms of the strain-gradient plasticity type. This nonlocal regularization has the effect of introducing an intrinsic length scale into the energy. We also put forth a physical argument that identifies the intrinsic length and suggests a linear growth of the nonlocal energy. Under these assumptions, ductile fracture emerges as the net result of two competing effects: whereas the sublinear growth of the local energy promotes localization of deformation to failure planes, the nonlocal regularization stabilizes this process, thus resulting in an orderly progression towards failure and a well-defined specific fracture energy. The optimal scaling laws derived here show that ductile fracture results from localization of deformations to void sheets, and that it requires a well-defined energy per unit fracture area. In particular, fractal modes of fracture are ruled out under the assumptions of the analysis. The optimal scaling laws additionally show that ductile fracture is cohesive in nature, i.e., it obeys a well-defined relation between tractions and opening displacements. Finally, the scaling laws supply a link between micromechanical properties and macroscopic fracture properties. In particular, they reveal the relative roles that surface energy and microplasticity play as contributors to the specific fracture energy of the material. Next, we present an experimental assessment of the optimal scaling laws. We show that when the specific fracture energy is renormalized in a manner suggested by the optimal scaling laws, the data falls within the bounds predicted by the analysis and, moreover, they ostensibly collapse---with allowances made for experimental scatter---on a master curve dependent on the hardening exponent, but otherwise material independent.
Resumo:
We investigated age, growth, and ontogenetic effects on the proportionality of otolith size to fish size in laboratory-reared delta smelt (Hypomesus transpacificus) from the San Francisco Bay estuary. Delta smelt larvae were reared from hatching in laboratory mesocosms for 100 days. Otolith increments from known-age fish were enumerated to validate that growth increments were deposited daily and to validate the age of fish at first ring formation. Delta smelt were found to lay down daily ring increments; however, the first increment did not form until six days after hatching. The relationship between otolith size and fish size was not biased by age or growth-rate effects but did exhibit an interruption in linear growth owing to an ontogenetic shift at the postflexon stage. To back-calculate the size-at-age of individual fish, we modified the biological intercept (BI) model to account for ontogenetic changes in the otolith-size−fish-size relationship and compared the results to the time-varying growth model, as well as the modified Fry model. We found the modified BI model estimated more accurately the size-at-age from hatching to 100 days after hatching. Before back-calculating size-at-age with existing models, we recommend a critical evaluation of the effects that age, growth, and ontogeny can have on the otolith-size−fish-size relations
Resumo:
Esta tese é composta por três artigos que permitiram avaliar o efeito da exposição ao tabagismo durante a gestação e no início da infância sobre o crescimento linear e ganho de peso do nascimento à adolescência, além de verificar o efeito do nível socioeconômico no início da infância e da mobilidade social sobre a adiposidade até a adolescência. Foram utilizados para este fim os dados de uma coorte de crianças nascidas entre 1994 e 1999 na cidade de Cuiabá-MT. Essas crianças fizeram parte de um estudo de base populacional realizado na cidade de Cuiabá, entre 1999 e 2000, com 2405 crianças (0 a 5 anos) e foram selecionadas aleatoriamente em unidades básicas de saúde quando da vacinação. As mães foram entrevistadas após a vacinação, quando foram obtidos dados relativos à exposição ao tabagismo gestacional, tabagismo passivo, nível socioeconômico das famílias e dados antropométricos. Entre 2009 e 2011, após aproximadamente 11 anos, essas crianças foram localizadas por meio do Censo Escolar e então 1716 adolescentes entre 10 e 17 anos de idade (71,4% da população) foram reavaliados nas escolas da rede pública e privada de Cuiabá, de 18 municípios do estado e outras 5 capitais do país. A análise por modelos lineares de efeitos mistos permitiu verificar a mudança de estatura e Índice de Massa Corporal (IMC) entre o nascimento e a adolescência. O primeiro e o segundo artigo desta tese avaliaram o efeito da exposição ao tabagismo materno durante a gestação e no início da infância sobre o crescimento linear e o IMC entre o nascimento e a adolescência. Crianças expostas ao tabagismo materno durante a gestação e no início da infância apresentaram menor estatura desde o nascimento até a adolescência quando comparadas às crianças não expostas. Quanto à adiposidade, entre o nascimento e a infância a mudança do IMC foi similar entre as crianças expostas e não expostas ao tabagismo materno, porém, entre a infância e a adolescência, aquelas expostas apenas durante a gestação mostraram maior ganho de IMC. Em conjunto, os dados corroboram o efeito deletério do tabagismo sobre o crescimento, efeito já bastante estudado, mas também indicam que avaliar e comparar exposição gestacional com pós-gestacional é importante, dado que seus efeitos parecem ser diferentes. O terceiro artigo avaliou o efeito do nível socioeconômico no início da infância e da mobilidade social entre a infância e a adolescência sobre o IMC do nascimento à adolescência. Para avaliar o nível socioeconômico, as famílias foram classificadas em nível econômico alto, médio e baixo, a partir do Critério de Classificação Econômica Brasil. Foi observada expressiva mobilidade social na população, principalmente entre os de menor nível econômico. Houve maior aumento do IMC entre o nascimento e a adolescência entre aqueles de maior nível econômico na infância e aqueles que permaneceram nas classes mais elevadas, indicando que a posição inicial foi o maior determinante das mudanças observadas no IMC.
Resumo:
A leptina tem um papel importante na regulação do sistema reprodutivo além de seu papel principal na regulação do peso corporal e ingestão alimentar. O objetivo deste estudo foi avaliar o efeito da administração de leptina durante o período neonatal na função testicular da prole adulta. Vinte e quatro filhotes de 12 mães foram divididos em 2 grupos: Grupo leptina: injetados com 50 L de leptina (80ng/gPC, subcutânea) nos primeiros 10 dias de vida e Grupo Controle: injetados com o mesmo volume de solução salina. Todos os animais foram sacrificados aos 90 dias de vida. Parâmetros analisados: consumo alimentar, massa corporal, crescimento linear, data de início da puberdade, perfil lipídico, níveis séricos de estradiol e testosterona, expressão gênica (PCR em tempo real) e expressão proteica (Western blot) de ObRa, OBRb, aromatase, AR, ER, morfometria testicular, número, morfologia e viabilidade de espermatozoides. Os dados foram expressos como média erro padrão. A significância estatística foi determinada pelo teste t de Student. A Injeção de leptina levou a uma redução (p≤0,008) no consumo alimentar a partir do dia 26 ao 40 e do dia 70 em diante, enquanto que a massa corporal (p≤0,03) e o crescimento linear (p≤0,05) foram reduzidos do dia 26 até o dia 45. O peso da hipófise (p≤0,0006), hipotálamo (p≤0,01), próstata (p≤0,003), testículo (p≤0,008) e epidídimo (p≤0,004) e bexiga (p≤0,009) foram significativamente reduzidos pela injeção de leptina. A Injeção de leptina adiantou o início da puberdade (C=45,0 0,3; L=41,6 0,3; dias, P≤0,0001). Em relação ao perfil lipídico, a administração de leptina gerou um aumento nos níveis séricos de TG (C= 116,5 15,9; L=172,6 19,7; ng/dL, P≤0,05) e uma redução nos níveis de HDL (C=33 1,5; L = 24 3,5; ng/dL, P≤0,02). Os níveis séricos de testosterona também foram reduzidos pela leptina (C=5,2 1,0; L=1,1 0,3; ng/mL, P≤0,003). Todos os genes avaliados por PCR em tempo real mostraram um aumento na sua expressão: Obra (C=0,32 0,04; L=0,69 0,16; P≤0,04), OBRb (C=0,37 0,06; L=0,71 0,16; P≤0,03), AR (C=0,28 0,02; L=0,71 0,16; P≤0,02), Aromatase (C=0,31 0,04; L=0,53 0,09; P≤0,04), ER-α (C=0,79 0,03; L=0,93 0,03; P≤0,01), ER-β (C=0,29 0,03; L=0,73 0,16; P≤ 0,02). Por outro lado, a expressão proteica de OBR (C=4,4 0,29; L=6,6 0,84; P≤0,05), ER-α (C=0,4 0,02; L=0,6 0,05; P≤0,03) e aromatase (C=0,4 0,03; L=0,5 0,02; P≤0,04) aumentaram, enquanto que a expressão proteica de AR (C=0,16 0,01; L=0,09 0,01; P≤0,009) foi reduzida pela administração de leptina. A análise morfométrica mostrou que a leptina levou a um aumento da área total do túbulo seminífero (C=64,6 3,1; L=56,1 2,1;μm, P≤0,01), aumento da área luminal (C=40,6 2,3; L= 48,7 0,9; μm P≤ 0,004) e na altura do epitélio (C=21,5 1,2; L=24,6 1,1; μm, P≤0,03), enquanto que o comprimento do túbulo seminífero foi reduzido no grupo tratado (C=2200 350; L= 1100 110;cm, P≤0,006). A administração de leptina levou a um aumento no número total de espermatozoides (C=20x107 2x107; L=30x107 5x107;Cls/mL, P≤0,009) e no número de anormalidades (C=40,6 1,9; L=45,8 1,2, P≤0,049). Podemos concluir que a leptina tem um papel importante na morfologia e função testicular. A leptina parece ter efeito direto neste tecido uma vez que a expressão gênica e proteica de OBR, AR, ER e aromatase foram alterados pela administração da leptina.
Resumo:
We apply adjoint-based sensitivity analysis to a time-delayed thermo-acoustic system: a Rijke tube containing a hot wire. We calculate how the growth rate and frequency of small oscillations about a base state are affected either by a generic passive control element in the system (the structural sensitivity analysis) or by a generic change to its base state (the base-state sensitivity analysis). We illustrate the structural sensitivity by calculating the effect of a second hot wire with a small heat-release parameter. In a single calculation, this shows how the second hot wire changes the growth rate and frequency of the small oscillations, as a function of its position in the tube. We then examine the components of the structural sensitivity in order to determine the passive control mechanism that has the strongest influence on the growth rate. We find that a force applied to the acoustic momentum equation in the opposite direction to the instantaneous velocity is the most stabilizing feedback mechanism. We also find that its effect is maximized when it is placed at the downstream end of the tube. This feedback mechanism could be supplied, for example, by an adiabatic mesh. We illustrate the base-state sensitivity by calculating the effects of small variations in the damping factor, the heat-release time-delay coefficient, the heat-release parameter, and the hot-wire location. The successful application of sensitivity analysis to thermo-acoustics opens up new possibilities for the passive control of thermo-acoustic oscillations by providing gradient information that can be combined with constrained optimization algorithms in order to reduce linear growth rates. © Cambridge University Press 2013.
Resumo:
In any thermoacoustic analysis, it is important not only to predict linear frequencies and growth rates, but also the amplitude and frequencies of any limit cycles. The Flame Describing Function (FDF) approach is a quasi-linear analysis which allows the prediction of both the linear and nonlinear behaviour of a thermoacoustic system. This means that one can predict linear growth rates and frequencies, and also the amplitudes and frequencies of any limit cycles. The FDF achieves this by assuming that the acoustics are linear and that the flame, which is the only nonlinear element in the thermoacoustic system, can be adequately described by considering only its response at the frequency at which it is forced. Therefore any harmonics generated by the flame's nonlinear response are not considered. This implies that these nonlinear harmonics are small or that they are sufficiently filtered out by the linear dynamics of the system (the low-pass filter assumption). In this paper, a flame model with a simple saturation nonlinearity is coupled to simple duct acoustics, and the success of the FDF in predicting limit cycles is studied over a range of flame positions and acoustic damping parameters. Although these two parameters affect only the linear acoustics and not the nonlinear flame dynamics, they determine the validity of the low-pass filter assumption made in applying the flame describing function approach. Their importance is highlighted by studying the level of success of an FDF-based analysis as they are varied. This is achieved by comparing the FDF's prediction of limit-cycle amplitudes to the amplitudes seen in time domain simulations.
Resumo:
Electrostatic assembly of one species can be realized using gelatin as a polyampholyte. Under suitable conditions where the electrostatic attraction and repulsion were both significant and in balance, linear growth of multilayers driven by electrostatic interactions was sustained over many successive assembly steps, and the maximum amount of adsorption of each layer was reached when the solution pH was around the isoelectric point. The rearrangement of the adsorbed chains after drying was confirmed by contact angle analysis. In addition with only one species involved, the assembled thin films should be chemically uniform rather than layered.