945 resultados para Linear Multi-step Formulae
Resumo:
BACKGROUND: Fatty acid sugar esters are used as non-ionic surfactants in cosmetics, foodstuffs and pharmaceuticals. In particular, monoesters of xylitol have attracted industrial interest due to their outstanding biological activities. In this work, xylitol monoesters were obtained by chemoenzymatic synthesis, in which, first, xylitol was made soluble in organic solvent by chemo-protecting reaction, followed by enzymatic esterification reaction using different acyl donors. A commercial immobilized Candida antartica lipase was used as catalyst, and reactions with pure xylitol were carried out to generate data for comparison. RESULTS: t-BuOH was found to be the most suitable solvent to carry out esterification reactions with both pure and protected xylitol. The highest yields were obtained for reactions carried out with pure xylitol, but in this case by-products, such as di- and tri-esters isomers were formed, which required a multi-step purification process. For the systems with protected xylitol, conversions of 86%, 58% and 24% were achieved using oleic, lauric and butyric acids, respectively. The structures of the monoesters were confirmed by (13)C- and (1)H-NMR and microanalysis. CONCLUSION: The chemoenzymatic synthesis of xylitol monoesters avoided laborious downstream processing when compared with reactions performed with pure xylitol. Monoesters production from protected xylitol was shown to be a practical, economical, and clean route for this process, allowing a simple separation, because there are no other products formed besides xylitol monoesters and residual xylitol. (C) 2009 Society of Chemical Industry
Resumo:
In recent years, progress has been made in modelling long chain branched polymers by the introduction of the so-called pompom model. Initially developed by McLeish and Larson (1998), the model has undergone several improvements or alterations, leading to the development of new formulations. Some of these formulations however suffer from certain mathematical defects. The purpose of the present paper is to review some of the formulations of the pom-pom constitutive model, and to investigate their possible mathematical defects. Next, an alternative formulation is proposed, which does not appear to exhibit mathematical defects, and we explore its modelling performance by comparing the predictions with experiments in non-trivial rheometric flows of an LDPE melt. The selected rheometric flows are the double step strain, as well as the large amplitude oscillatory shear experiments. For LAOS experiments, the comparison involves the use of Fourier-transform analysis.
Resumo:
The radial undistortion model proposed by Fitzgibbon and the radial fundamental matrix were early steps to extend classical epipolar geometry to distorted cameras. Later minimal solvers have been proposed to find relative pose and radial distortion, given point correspondences between images. However, a big drawback of all these approaches is that they require the distortion center to be exactly known. In this paper we show how the distortion center can be absorbed into a new radial fundamental matrix. This new formulation is much more practical in reality as it allows also digital zoom, cropped images and camera-lens systems where the distortion center does not exactly coincide with the image center. In particular we start from the setting where only one of the two images contains radial distortion, analyze the structure of the particular radial fundamental matrix and show that the technique also generalizes to other linear multi-view relationships like trifocal tensor and homography. For the new radial fundamental matrix we propose different estimation algorithms from 9,10 and 11 points. We show how to extract the epipoles and prove the practical applicability on several epipolar geometry image pairs with strong distortion that - to the best of our knowledge - no other existing algorithm can handle properly.
Resumo:
OBJECTIVE: Use of analgesics has been increasingly recognized as a major public health issue with important consequences in Turkey. The objective of the study was to determine the prevalence and patterns of analgesics usage and associated factors in adults with pain complaints. METHODS: A cross-sectional study was conducted in 15 cities selected from five demographic regions in Turkey. The study sample population comprised 1.909 adults 18-65 age groups suffering from pain. The sampling method was multi-step stratified weighted quota-adjusted sampling. Data were collected by face-to-face interviews using a semi-structured survey questionnaire consisting of 28 questions. Odds ratios were produced by logistic regression analyses. RESULTS: The prevalence of analgesic use was 73.1%, and it was higher in females (75.7%; p<0.05), in subjects 45-54 years (81.4%; p<0.05), in subjects in rural areas (74.6%; p<0.05), in subjects in northern region (84.3%; p<0.05), in illiterate subjects (79.1%; p>0.05), and in subjects of lower socioeconomic status (74.1%; p>0.05). One in ten of the participants used non-prescription analgesics. Non-prescription analgesics were more prevalent among the 55-65 age groups (18.1%; p<0.05), among female (11.6%; p>0.05), among the urban population (10.7%; p>0.05), and in subjects of lower middle socioeconomic status (13.2%; p<0.05). Logistic regression showed statistically significant ORs only for age groups, duration of education, socioeconomic status, and demographic regions (p<0.05). CONCLUSIONS: The results showed that the prevalence of analgesic use and prescription analgesic use is high in Turkey, and their use is related to sociodemographic characteristics.
Resumo:
Mestrado em Computação e Instrumentação Médica
Resumo:
Dissertação apresentada ao Instituto Politécnico do Porto para obtenção do Grau de Mestre em Logística
Resumo:
Forecasting future sales is one of the most important issues that is beyond all strategic and planning decisions in effective operations of retail businesses. For profitable retail businesses, accurate demand forecasting is crucial in organizing and planning production, purchasing, transportation and labor force. Retail sales series belong to a special type of time series that typically contain trend and seasonal patterns, presenting challenges in developing effective forecasting models. This work compares the forecasting performance of state space models and ARIMA models. The forecasting performance is demonstrated through a case study of retail sales of five different categories of women footwear: Boots, Booties, Flats, Sandals and Shoes. On both methodologies the model with the minimum value of Akaike's Information Criteria for the in-sample period was selected from all admissible models for further evaluation in the out-of-sample. Both one-step and multiple-step forecasts were produced. The results show that when an automatic algorithm the overall out-of-sample forecasting performance of state space and ARIMA models evaluated via RMSE, MAE and MAPE is quite similar on both one-step and multi-step forecasts. We also conclude that state space and ARIMA produce coverage probabilities that are close to the nominal rates for both one-step and multi-step forecasts.
Resumo:
Dissertation presented to obtain the Ph.D degree in Biology
Resumo:
Fiber membranes prepared from jute fragments can be valuable, low cost, and renewable. They have broad application prospects in packing bags, geotextiles, filters, and composite reinforcements. Traditionally, chemical adhesives have been used to improve the properties of jute fiber membranes. A series of new laccase, laccase/mediator systems, and multi-enzyme synergisms were attempted. After the laccase treatment of jute fragments, the mechanical properties and surface hydrophobicity of the produced fiber membranes increased because of the cross-coupling of lignins with ether bonds mediated by laccase. The optimum conditions were a buffer pH of 4.5 and an incubation temperature of 60 °C with 0.92 U/mL laccase for 3 h. Laccase/guaiacol and laccase/alkali lignin treatments resulted in remarkable increases in the mechanical properties; in contrast, the laccase/2,2-azino-bis-(3-ethylthiazoline-6-sulfonate) (ABTS) and laccase/2,6-dimethoxyphenol treatments led to a decrease. The laccase/ guaiacol system was favorable to the surface hydrophobicity of jute fiber membranes. However, the laccase/alkali lignin system had the opposite effect. Xylanase/laccase and cellulase/laccase combined treatments were able to enhance both the mechanical properties and the surface hydrophobicity of jute fiber membranes. Among these, cellulase/laccase treatment performed better; compared to mechanical properties, the surface hydrophobicity of the jute fiber membranes showed only a slight increase after the enzymatic multi-step processes.
Resumo:
Biofilm formation is a multi-step process influenced by surface properties. We investigated early and mature biofilm of Staphylococcus aureus on 4 different biological calcium phosphate (CaP) bone grafts used for filling bone defects. We investigated standardised cylinders of fresh and fresh-frozen human bone grafts were harvested from femoral heads; processed humanand bovine bone grafts were obtained preformed. Biofilm formation was done in tryptic soy broth (TSB) using S. aureus (ATCC 29213) with static conditions. Biofilm density after 3 h (early biofilm) and 24 h (mature biofilm) was investigated by sonication and microcalorimetry. After 3 h, bacterial density was highest on fresh-frozenandfresh bone grafts. After 24 h, biofilm density was lowest on freshbone grafts (p < 0.001) compared to the other 3 materials, which did not differ quantitatively (p > 0.05). The lowest increase in bacterial density was detected on fresh bone grafts (p < 0.001). Despite normal shaped colonies, we found additional small colonies on the surface of the fresh and fresh-frozen samples by sonication. This was also apparent in microcalorimetric heat-flow curves. The four investigated CaP bone grafts showed minor structural differences in architecture but marked differences concerning serum coverage and the content of bone marrow, fibrous tissue and bone cells. These variations resulted in a decreased biofilm density on freshand fresh-frozenbone grafts after 24 h, despite an increased early biofilm formation and might also be responsible for the variations in colony morphology (small colonies). Detection of small colony variants by microcalorimetry might be a new approach to improve the understanding of biofilm formation.
Resumo:
State-of-the-art production technologies for conjugate vaccines are complex, multi-step processes. An alternative approach to produce glycoconjugates is based on the bacterial N-linked protein glycosylation system first described in Campylobacter jejuni. The C. jejuni N-glycosylation system has been successfully transferred into Escherichia coli, enabling in vivo production of customized recombinant glycoproteins. However, some antigenic bacterial cell surface polysaccharides, like the Vi antigen of Salmonella enterica serovar Typhi, have not been reported to be accessible to the bacterial oligosaccharyltransferase PglB, hence hamper development of novel conjugate vaccines against typhoid fever. In this report, Vi-like polysaccharide structures that can be transferred by PglB were evaluated as typhoid vaccine components. A polysaccharide fulfilling these requirements was found in Escherichia coli serovar O121. Inactivation of the E. coli O121 O antigen cluster encoded gene wbqG resulted in expression of O polysaccharides reactive with antibodies raised against the Vi antigen. The structure of the recombinantly expressed mutant O polysaccharide was elucidated using a novel HPLC and mass spectrometry based method for purified undecaprenyl pyrophosphate (Und-PP) linked glycans, and the presence of epitopes also found in the Vi antigen was confirmed. The mutant O antigen structure was transferred to acceptor proteins using the bacterial N-glycosylation system, and immunogenicity of the resulting conjugates was evaluated in mice. The conjugate-induced antibodies reacted in an enzyme-linked immunosorbent assay with E. coli O121 LPS. One animal developed a significant rise in serum immunoglobulin anti-Vi titer upon immunization.
Resumo:
The generation of an antigen-specific T-lymphocyte response is a complex multi-step process. Upon T-cell receptor-mediated recognition of antigen presented by activated dendritic cells, naive T-lymphocytes enter a program of proliferation and differentiation, during the course of which they acquire effector functions and may ultimately become memory T-cells. A major goal of modern immunology is to precisely identify and characterize effector and memory T-cell subpopulations that may be most efficient in disease protection. Sensitive methods are required to address these questions in exceedingly low numbers of antigen-specific lymphocytes recovered from clinical samples, and not manipulated in vitro. We have developed new techniques to dissect immune responses against viral or tumor antigens. These allow the isolation of various subsets of antigen-specific T-cells (with major histocompatibility complex [MHC]-peptide multimers and five-color FACS sorting) and the monitoring of gene expression in individual cells (by five-cell reverse transcription-polymerase chain reaction [RT-PCR]). We can also follow their proliferative life history by flow-fluorescence in situ hybridization (FISH) analysis of average telomere length. Recently, using these tools, we have identified subpopulations of CD8+ T-lymphocytes with distinct proliferative history and partial effector-like properties. Our data suggest that these subsets descend from recently activated T-cells and are committed to become differentiated effector T-lymphocytes.
Resumo:
Various compositions of synthetic calcium phosphates (CaP) have been proposed and their use has considerably increased over the past decades. Besides differences in physico-chemical properties, resorption and osseointegration, artificial CaP bone graft might differ in their resistance against biofilm formation. We investigated standardised cylinders of 5 different CaP bone grafts (cyclOS, chronOS (both β-TCP (tricalcium phosphate)), dicalcium phosphate (DCP), calcium-deficient hydroxyapatite (CDHA) and α-TCP). Various physico-chemical characterisations e.g., geometrical density, porosity, and specific surface area were investigated. Biofilm formation was carried out in tryptic soy broth (TSB) and human serum (SE) using Staphylococcus aureus (ATCC 29213) and S. epidermidis RP62A (ATCC 35984). The amount of biofilm was analysed by an established protocol using sonication and microcalorimetry. Physico-chemical characterisation showed marked differences concerning macro- and micropore size, specific surface area and porosity accessible to bacteria between the 5 scaffolds. Biofilm formation was found on all scaffolds and was comparable for α-TCP, chronOS, CDHA and DCP at corresponding time points when the scaffolds were incubated with the same germ and/or growth media, but much lower for cyclOS. This is peculiar because cyclOS had an intermediate porosity, mean pore size, specific surface area, and porosity accessible to bacteria. Our results suggest that biofilm formation is not influenced by a single physico-chemical parameter alone but is a multi-step process influenced by several factors in parallel. Transfer from in vitro data to clinical situations is difficult; thus, advocating the use of cyclOS scaffolds over the four other CaP bone grafts in clinical situations with a high risk of infection cannot be clearly supported based on our data.
Resumo:
Adequate in-vitro training in valved stents deployment as well as testing of the latter devices requires compliant real-size models of the human aortic root. The casting methods utilized up to now are multi-step, time consuming and complicated. We pursued a goal of building a flexible 3D model in a single-step procedure. We created a precise 3D CAD model of a human aortic root using previously published anatomical and geometrical data and printed it using a novel rapid prototyping system developed by the Fab@Home project. As a material for 3D fabrication we used common house-hold silicone and afterwards dip-coated several models with dispersion silicone one or two times. To assess the production precision we compared the size of the final product with the CAD model. Compliance of the models was measured and compared with native porcine aortic root. Total fabrication time was 3 h and 20 min. Dip-coating one or two times with dispersion silicone if applied took one or two extra days, respectively. The error in dimensions of non-coated aortic root model compared to the CAD design was <3.0% along X, Y-axes and 4.1% along Z-axis. Compliance of a non-coated model as judged by the changes of radius values in the radial direction by 16.39% is significantly different (P<0.001) from native aortic tissue--23.54% at the pressure of 80-100 mmHg. Rapid prototyping of compliant, life-size anatomical models with the Fab@Home 3D printer is feasible--it is very quick compared to previous casting methods.
Resumo:
Generating an anti-tumor immune response is a multi-step process that is executed by effector T cells that can recognize and kill tumor targets. However, tumors employ multiple strategies to attenuate the effectiveness of T-cell-mediated attack. They achieve this by interfering with nearly every step required for effective immunity, from deregulation of antigen-presenting cells to establishment of a physical barrier at the vasculature that prevents homing of effector tumor-rejecting cells and the suppression of effector lymphocytes through the recruitment and activation of immunosuppressive cells such as myeloid-derived suppressor cells, tolerogenic monocytes, and T regulatory cells. Here, we review the ways in which tumors exert immune suppression and highlight the new therapies that seek to reverse this phenomenon and promote anti-tumor immunity. Understanding anti-tumor immunity, and how it becomes disabled by tumors, will ultimately lead to improved immune therapies and prolonged survival of patients.