67 resultados para Lignite


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A chemical looping process using the redox reactions of iron oxide has been used to produce separate streams of pure H2 and CO2 from a solid fuel. An iron oxide carrier prepared using a mechanical mixing technique and comprised of 100wt.% Fe2O3 was used. It was demonstrated that hydrogen can be produced from three representative coals - a Russian bituminous, a German lignite and a UK sub-bituminous coal. Depending on the fuel, pure H2 with [CO] ≲50vol.ppm can be obtained from the proposed process. The cyclic stability of the iron oxide carrier was not adversely affected by contaminants found in syngas which are gaseous above 273K. Stable quantities of H2 were produced over five cycles for all three coals investigated. Independent of the fuel, SO2 was not formed during the oxidation with steam, i.e. the produced H2 was not contaminated with SO2. Since oxidation with air removes contaminants and generates useful heat and pure N2 for purging, it should be included in the operating cycle. Overall, it was demonstrated that the proposed process may be an attractive approach to upgrade crude syngas produced by the gasification of low-rank coals to pure H2, representing a substantial increase in calorific value, whilst simultaneous capturing CO2, a greenhouse gas. © 2010 Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, the first Chinese microgravity (μ-g) experimental study on coal combustion was introduced. An experimental system used to study the ignition process of single coal particles was built up, complying with the requirements of the 3.5 s drop tower in the National Microgravity Laboratory of China (NMLC). High volatile bituminous and lignite coal particles with diameter of 1.5 and 2.0 mm were tested. The ignition and combustion process was recorded by a color CCD and the particle surface temperature before and at the ignition was determined by the RGB colorimetric method. Comparative experiments were conducted at normal gravity (1-g). The experiments revealed that at different gravity levels, the ignition of all tested coal particles commenced in homogeneous phase, while the shape, structure, brightness and development of the flames, as well as the volatile matter release during the ignition process are different. At μ-g, the part of volatile was released as a jet, while such a phenomenon was barely observed at 1-g. Also, after ignition, flames were more spherical, thicker, laminated and dimmer at μ-g. It was confirmed that ignition temperature decreased as the particle size or volatile content increased. However, contradicted to existing experimental results, provided other experimental conditions except gravity level were the same, ignition temperature of coal particles was about 50–80 K lower at μ-g than that at 1-g.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador: